Math Problem Statement

Evaluate the integral using the indicated trigonometric substitution. Sketch and label the associated right triangle. \( \int \frac{dx}{x^2 \sqrt{4 - x^2}} \) where \( x = 2 \sin \theta \)

Solution

To solve the given integral using the indicated trigonometric substitution, we will follow these steps:

Given Integral:

dxx24x2\int \frac{dx}{x^2 \sqrt{4 - x^2}} with the substitution x=2sinθx = 2 \sin \theta.

Step 1: Trigonometric Substitution

The substitution x=2sinθx = 2 \sin \theta leads to the following:

  • dx=2cosθdθdx = 2 \cos \theta \, d\theta
  • 4x2=44sin2θ=4(1sin2θ)=2cosθ\sqrt{4 - x^2} = \sqrt{4 - 4\sin^2\theta} = \sqrt{4(1 - \sin^2\theta)} = 2\cos\theta

Step 2: Substituting into the Integral

Substitute x=2sinθx = 2\sin\theta, dx=2cosθdθdx = 2\cos\theta\,d\theta, and 4x2=2cosθ\sqrt{4 - x^2} = 2\cos\theta into the integral:

dxx24x2=2cosθdθ(2sinθ)22cosθ\int \frac{dx}{x^2 \sqrt{4 - x^2}} = \int \frac{2 \cos \theta \, d\theta}{(2 \sin \theta)^2 \cdot 2 \cos \theta}

This simplifies to: 2cosθdθ4sin2θ2cosθ=dθ4sin2θ\int \frac{2 \cos \theta \, d\theta}{4 \sin^2 \theta \cdot 2 \cos \theta} = \int \frac{d\theta}{4 \sin^2 \theta} Simplifying further: 14csc2θdθ\frac{1}{4} \int \csc^2 \theta \, d\theta

Step 3: Integrating

The integral of csc2θ\csc^2 \theta is cotθ-\cot \theta, so we have: 14(cotθ)+C=14cotθ+C\frac{1}{4} \left( -\cot \theta \right) + C = -\frac{1}{4} \cot \theta + C

Step 4: Back Substitution

We now need to express cotθ\cot \theta in terms of xx. From the substitution x=2sinθx = 2\sin\theta, we know: sinθ=x2\sin \theta = \frac{x}{2} Using the Pythagorean identity cotθ=cosθsinθ\cot \theta = \frac{\cos \theta}{\sin \theta}, we get: cosθ=1sin2θ=1x24=4x22\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{x^2}{4}} = \frac{\sqrt{4 - x^2}}{2} So: cotθ=cosθsinθ=4x22x2=4x2x\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\frac{\sqrt{4 - x^2}}{2}}{\frac{x}{2}} = \frac{\sqrt{4 - x^2}}{x}

Final Answer:

14cotθ+C=144x2x+C=4x24x+C-\frac{1}{4} \cot \theta + C = -\frac{1}{4} \cdot \frac{\sqrt{4 - x^2}}{x} + C = \frac{\sqrt{4 - x^2}}{4x} + C

Thus, the evaluated integral is: dxx24x2=4x24x+C\int \frac{dx}{x^2 \sqrt{4 - x^2}} = \frac{\sqrt{4 - x^2}}{4x} + C

Right Triangle Sketch:

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric substitution
Integration

Formulas

Trigonometric substitution: \( x = 2 \sin \theta \)
Pythagorean identity: \( \cos^2\theta + \sin^2\theta = 1 \)
Integral of \( \csc^2 \theta \)

Theorems

Trigonometric identities
Pythagorean theorem

Suitable Grade Level

College-level Calculus