Math Problem Statement
- Trig Substitution. Use a trig substitution to evaluate the indefinite integral. Show all the details of your substitution. fdx/x^2 sqrtx^2+1 ANTIDERIVATIVE: answers only
Solution
The integral given is:
1. Substitution:
Use the substitution , which gives:
2. Transform the integral:
Substitute into the integral:
= \int \frac{d\theta}{\tan^2(\theta)} = \int \cot^2(\theta) d\theta$$ ### 3. Simplify and integrate: Use the identity $$\cot^2(\theta) = \csc^2(\theta) - 1$$: $$\int \cot^2(\theta) d\theta = \int (\csc^2(\theta) - 1) d\theta$$ $$= -\cot(\theta) - \theta + C$$ ### 4. Back-substitute $$\theta = \tan^{-1}(x)$$: Since $$\cot(\theta) = \frac{1}{x}$$ and $$\theta = \tan^{-1}(x)$$, we have: $$-\frac{1}{x} - \tan^{-1}(x) + C$$ ### Final Answer: $$\boxed{-\frac{1}{x} - \tan^{-1}(x) + C}$$ Would you like to review any specific details or steps? Here are 5 related questions to explore further: 1. How does the identity $$\cot^2(\theta) = \csc^2(\theta) - 1$$ arise? 2. Can you use different substitutions for the same integral? What happens? 3. How does this method apply to similar integrals involving $$\sqrt{x^2 - 1}$$? 4. What are the conditions for using trigonometric substitution? 5. Can you derive the formulas for the inverse trigonometric functions used here? **Tip:** Always double-check trigonometric identities when simplifying integrals involving substitutions.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometric Substitution
Integration
Trigonometric Identities
Formulas
x = tan(θ)
dx = sec^2(θ) dθ
cot^2(θ) = csc^2(θ) - 1
Theorems
Trigonometric Substitution
Pythagorean Identities
Suitable Grade Level
Undergraduate Calculus
Related Recommendation
Evaluate the Integral ∫ (x / √(4 - x^2)) dx Using Trigonometric Substitution
Integral of x^3+1 / x(x^2+1)^2 using Trigonometric Substitution
Integration using Trigonometric Substitution for 1/x^2(x^2 + 4)^(1/2)
Evaluate Integral Using Trigonometric Substitution for x = 2 sin θ
Integral of (x^3 / √(x^2 + 4)) using Substitution x = 2tanθ