Math Problem Statement

Evaluate

Integral from nothing to nothing cosine cubed StartFraction x Over 13 EndFraction dx∫cos3x13 dx.

Solution

To evaluate the integral of cos3(x13)\cos^3\left(\frac{x}{13}\right) with respect to xx, we can use a trigonometric identity to simplify the integral. Specifically, we use the identity:

cos3(θ)=cos(θ)cos2(θ)=cos(θ)(1+cos(2θ)2)\cos^3(\theta) = \cos(\theta) \cdot \cos^2(\theta) = \cos(\theta) \cdot \left(\frac{1 + \cos(2\theta)}{2}\right)

Let θ=x13\theta = \frac{x}{13}. Then:

cos3(x13)=cos(x13)1+cos(2x13)2\cos^3\left(\frac{x}{13}\right) = \cos\left(\frac{x}{13}\right) \cdot \frac{1 + \cos\left(\frac{2x}{13}\right)}{2}

This expands to:

12cos(x13)+12cos(x13)cos(2x13)\frac{1}{2}\cos\left(\frac{x}{13}\right) + \frac{1}{2}\cos\left(\frac{x}{13}\right)\cos\left(\frac{2x}{13}\right)

So the integral becomes:

cos3(x13)dx=12cos(x13)dx+12cos(x13)cos(2x13)dx\int \cos^3\left(\frac{x}{13}\right) \, dx = \frac{1}{2} \int \cos\left(\frac{x}{13}\right) \, dx + \frac{1}{2} \int \cos\left(\frac{x}{13}\right)\cos\left(\frac{2x}{13}\right) \, dx

Now, we handle each integral separately.

First Integral

The first term is straightforward:

12cos(x13)dx\frac{1}{2} \int \cos\left(\frac{x}{13}\right) \, dx

The integral of cos(x13)\cos\left(\frac{x}{13}\right) is:

13sin(x13)13 \sin\left(\frac{x}{13}\right)

So the first integral becomes:

132sin(x13)\frac{13}{2} \sin\left(\frac{x}{13}\right)

Second Integral

For the second integral:

12cos(x13)cos(2x13)dx\frac{1}{2} \int \cos\left(\frac{x}{13}\right)\cos\left(\frac{2x}{13}\right) \, dx

We use the product-to-sum identity:

cos(A)cos(B)=12[cos(AB)+cos(A+B)]\cos(A)\cos(B) = \frac{1}{2}[\cos(A-B) + \cos(A+B)]

So:

cos(x13)cos(2x13)=12[cos(x13)+cos(3x13)]\cos\left(\frac{x}{13}\right)\cos\left(\frac{2x}{13}\right) = \frac{1}{2}\left[\cos\left(-\frac{x}{13}\right) + \cos\left(\frac{3x}{13}\right)\right]

Since cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta), we simplify to:

12[cos(x13)+cos(3x13)]\frac{1}{2}\left[\cos\left(\frac{x}{13}\right) + \cos\left(\frac{3x}{13}\right)\right]

So the second integral becomes:

14cos(x13)dx+14cos(3x13)dx\frac{1}{4} \int \cos\left(\frac{x}{13}\right) \, dx + \frac{1}{4} \int \cos\left(\frac{3x}{13}\right) \, dx

The integrals are:

134sin(x13)+1312sin(3x13)\frac{13}{4} \sin\left(\frac{x}{13}\right) + \frac{13}{12} \sin\left(\frac{3x}{13}\right)

Final Answer

Combining everything:

cos3(x13)dx=132sin(x13)+138sin(x13)+1312sin(3x13)+C\int \cos^3\left(\frac{x}{13}\right) \, dx = \frac{13}{2} \sin\left(\frac{x}{13}\right) + \frac{13}{8} \sin\left(\frac{x}{13}\right) + \frac{13}{12} \sin\left(\frac{3x}{13}\right) + C

Simplifying:

cos3(x13)dx=398sin(x13)+1312sin(3x13)+C\int \cos^3\left(\frac{x}{13}\right) \, dx = \frac{39}{8} \sin\left(\frac{x}{13}\right) + \frac{13}{12} \sin\left(\frac{3x}{13}\right) + C

where CC is the constant of integration.

Do you have any questions or need further clarification on this?


Here are 5 related questions to consider:

  1. What is the integral of cos2(x13)\cos^2\left(\frac{x}{13}\right) with respect to xx?
  2. Can you integrate cos4(x13)\cos^4\left(\frac{x}{13}\right) using similar identities?
  3. How does the process differ when integrating sin3(x13)\sin^3\left(\frac{x}{13}\right)?
  4. What is the indefinite integral of cos2(x)sin(x)\cos^2(x)\sin(x) with respect to xx?
  5. How do you apply integration by parts to trigonometric integrals?

Tip: Utilizing trigonometric identities can greatly simplify integrals involving powers of trigonometric functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integral Calculus

Formulas

Trigonometric identity: cos^3(theta) = cos(theta) * (1 + cos(2*theta)) / 2
Product-to-sum identity: cos(A) * cos(B) = 1/2 * [cos(A-B) + cos(A+B)]

Theorems

-

Suitable Grade Level

Advanced Undergraduate