Math Problem Statement

integral of cos^3(3x) trig substitution

Solution

To solve the integral of cos3(3x)\cos^3(3x) using trigonometric substitution, we follow these steps:

Step 1: Express the integrand in a more manageable form

Using the identity: cos3(θ)=cos(θ)cos2(θ)\cos^3(\theta) = \cos(\theta) \cdot \cos^2(\theta) and recognizing that cos2(θ)\cos^2(\theta) can be rewritten using the Pythagorean identity: cos2(θ)=1sin2(θ),\cos^2(\theta) = 1 - \sin^2(\theta), we express cos3(3x)\cos^3(3x) as: cos3(3x)=cos(3x)(1sin2(3x)).\cos^3(3x) = \cos(3x) \cdot (1 - \sin^2(3x)).

Thus, the integral becomes: cos3(3x)dx=cos(3x)(1sin2(3x))dx.\int \cos^3(3x) \, dx = \int \cos(3x) \cdot (1 - \sin^2(3x)) \, dx.

Step 2: Break the integral into two simpler integrals

We can now split this into two terms: cos(3x)(1sin2(3x))dx=cos(3x)dxcos(3x)sin2(3x)dx.\int \cos(3x)(1 - \sin^2(3x)) \, dx = \int \cos(3x) \, dx - \int \cos(3x) \sin^2(3x) \, dx.

Step 3: Solve the first integral

The first integral is straightforward: cos(3x)dx=13sin(3x)+C1.\int \cos(3x) \, dx = \frac{1}{3} \sin(3x) + C_1.

Step 4: Use substitution for the second integral

For the second integral cos(3x)sin2(3x)dx\int \cos(3x) \sin^2(3x) \, dx, use the substitution: u=sin(3x),du=3cos(3x)dxordu3=cos(3x)dx.u = \sin(3x), \quad du = 3 \cos(3x) \, dx \quad \text{or} \quad \frac{du}{3} = \cos(3x) \, dx.

Substituting into the integral: cos(3x)sin2(3x)dx=13u2du.\int \cos(3x) \sin^2(3x) \, dx = \frac{1}{3} \int u^2 \, du.

Step 5: Solve the simplified integral

Now, integrate u2u^2: u2du=u33=sin3(3x)3.\int u^2 \, du = \frac{u^3}{3} = \frac{\sin^3(3x)}{3}.

Thus, the second integral becomes: 13u2du=19sin3(3x)+C2.\frac{1}{3} \int u^2 \, du = \frac{1}{9} \sin^3(3x) + C_2.

Step 6: Combine the results

Now, combine the results from both integrals: cos3(3x)dx=13sin(3x)19sin3(3x)+C,\int \cos^3(3x) \, dx = \frac{1}{3} \sin(3x) - \frac{1}{9} \sin^3(3x) + C, where C=C1+C2C = C_1 + C_2 is the constant of integration.

Final Answer:

cos3(3x)dx=13sin(3x)19sin3(3x)+C.\int \cos^3(3x) \, dx = \frac{1}{3} \sin(3x) - \frac{1}{9} \sin^3(3x) + C.

Would you like more details or have any questions?

Here are 5 related questions for practice:

  1. What is the integral of cos3(x)\cos^3(x)?
  2. How do you integrate cos4(x)\cos^4(x) using trigonometric identities?
  3. What is the result of integrating sin3(2x)\sin^3(2x)?
  4. How would you approach the integral of sin2(x)cos(x)\sin^2(x) \cos(x)?
  5. What is the integral of cos(2x)sin(x)\cos(2x) \sin(x)?

Tip: Always look for ways to break down powers of trigonometric functions using identities like cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x) to simplify the integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integration
Substitution

Formulas

cos^2(θ) = 1 - sin^2(θ)
∫cos(3x) dx = (1/3)sin(3x)
Substitution: u = sin(3x), du = 3cos(3x) dx

Theorems

Pythagorean identity
Substitution rule for integration

Suitable Grade Level

Grades 11-12, College level