Math Problem Statement

integrate cos^3(3x)

Solution

To integrate cos3(3x)dx\cos^3(3x) \, dx, we can use a trigonometric identity and substitution. Here are the steps:

Step 1: Rewrite cos3(3x)\cos^3(3x)

We can use the identity: cos3(3x)=cos2(3x)cos(3x)=(1sin2(3x))cos(3x)\cos^3(3x) = \cos^2(3x) \cdot \cos(3x) = (1 - \sin^2(3x)) \cos(3x)

Thus, cos3(3x)dx=(1sin2(3x))cos(3x)dx\int \cos^3(3x) \, dx = \int (1 - \sin^2(3x)) \cos(3x) \, dx

Step 2: Substitute u=sin(3x)u = \sin(3x)

Let u=sin(3x)u = \sin(3x). Then dudx=3cos(3x)\frac{du}{dx} = 3 \cos(3x), or dx=du3cos(3x)dx = \frac{du}{3 \cos(3x)}.

Substituting, we get: (1u2)cos(3x)du3cos(3x)=13(1u2)du\int (1 - u^2) \cos(3x) \, \frac{du}{3 \cos(3x)} = \frac{1}{3} \int (1 - u^2) \, du

Step 3: Integrate with respect to uu

Now we have: 13(1u2)du=13(uu33)+C\frac{1}{3} \int (1 - u^2) \, du = \frac{1}{3} \left( u - \frac{u^3}{3} \right) + C

Step 4: Substitute back u=sin(3x)u = \sin(3x)

Replacing uu with sin(3x)\sin(3x), we get: 13(sin(3x)sin3(3x)3)+C\frac{1}{3} \left( \sin(3x) - \frac{\sin^3(3x)}{3} \right) + C

Final Answer

cos3(3x)dx=13sin(3x)19sin3(3x)+C\int \cos^3(3x) \, dx = \frac{1}{3} \sin(3x) - \frac{1}{9} \sin^3(3x) + C

Would you like further clarification on any part of this process?

Related Questions:

  1. How would you integrate cos3(x)\cos^3(x) without the 3x3x factor?
  2. Can this method be applied to cosn(kx)\cos^n(kx) for other powers nn?
  3. How would you handle sin3(3x)\sin^3(3x) instead of cos3(3x)\cos^3(3x)?
  4. What are other techniques for integrating trigonometric functions raised to a power?
  5. How would you integrate cos4(3x)\cos^4(3x) or cos5(3x)\cos^5(3x)?

Tip:

When integrating powers of trigonometric functions, rewriting the function using trigonometric identities often simplifies the integral, making substitution possible.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Integrals
Substitution

Formulas

cos^3(x) = cos^2(x) * cos(x) = (1 - sin^2(x)) * cos(x)
Substitution: u = sin(3x), du = 3cos(3x)dx

Theorems

Trigonometric identities
Substitution rule in integration

Suitable Grade Level

Grades 11-12