Math Problem Statement

Evaluate the given integral by making an appropriate change of variables.   6 

x − 8y

4x − y

 dA,

R

 where R is the parallelogram enclosed by the lines 

x − 8y = 0,   x − 8y = 2,   4x − y = 3,

 and 

4x − y = 8

Solution

To evaluate the integral

R(6(x8y)(4xy))dA\iint_R \left(6(x - 8y)(4x - y)\right) \, dA

where RR is the region enclosed by the lines x8y=0x - 8y = 0, x8y=2x - 8y = 2, 4xy=34x - y = 3, and 4xy=84x - y = 8, we’ll start by performing a change of variables based on the given lines.

Step 1: Define New Variables

Let: u=x8yu = x - 8y v=4xyv = 4x - y

Step 2: Find the Jacobian Determinant

To perform this change of variables, we need to express xx and yy in terms of uu and vv and then compute the Jacobian determinant, (x,y)(u,v)\frac{\partial(x, y)}{\partial(u, v)}.

  1. Solve the equations for xx and yy: x=u+8yx = u + 8y Substitute into the second equation: v=4(u+8y)y=4u+32yy=4u+31yv = 4(u + 8y) - y = 4u + 32y - y = 4u + 31y Solving for yy: y=v4u31y = \frac{v - 4u}{31} Substitute yy back into x=u+8yx = u + 8y: x=u+8(v4u31)=31u+8v32u31=u+8v31x = u + 8\left(\frac{v - 4u}{31}\right) = \frac{31u + 8v - 32u}{31} = \frac{u + 8v}{31}

  2. Now we compute the partial derivatives for the Jacobian matrix: xu=131,xv=831\frac{\partial x}{\partial u} = \frac{1}{31}, \quad \frac{\partial x}{\partial v} = \frac{8}{31} yu=431,yv=131\frac{\partial y}{\partial u} = -\frac{4}{31}, \quad \frac{\partial y}{\partial v} = \frac{1}{31}

  3. Calculate the Jacobian determinant: J=det(131831431131)=11(8)(4)3131=1+323131=33961J = \det\begin{pmatrix} \frac{1}{31} & \frac{8}{31} \\ -\frac{4}{31} & \frac{1}{31} \end{pmatrix} = \frac{1 \cdot 1 - (8)(-4)}{31 \cdot 31} = \frac{1 + 32}{31 \cdot 31} = \frac{33}{961}

Thus, the area element dAdA becomes dA=33961dudvdA = \frac{33}{961} \, du \, dv.

Step 3: Set Up the Integral

The region RR in the uvuv-plane is now described by: 0u2,3v80 \leq u \leq 2, \quad 3 \leq v \leq 8

The integrand, 6(x8y)(4xy)6(x - 8y)(4x - y), in terms of uu and vv is simply 6uv6uv.

The integral in terms of uu and vv becomes: R6uvdA=02386uv33961dvdu\iint_R 6uv \, dA = \int_0^2 \int_3^8 6uv \cdot \frac{33}{961} \, dv \, du

Step 4: Evaluate the Integral

Separate constants and integrate with respect to vv and uu: =1989610238uvdvdu= \frac{198}{961} \int_0^2 \int_3^8 uv \, dv \, du

  1. Inner integral in terms of vv: 38uvdv=uv2238=u6492=55u2\int_3^8 uv \, dv = u \cdot \frac{v^2}{2} \Big|_3^8 = u \cdot \frac{64 - 9}{2} = \frac{55u}{2}

  2. Outer integral in terms of uu: 1989610255u2du=19855192202udu=10890192202udu\frac{198}{961} \int_0^2 \frac{55u}{2} \, du = \frac{198 \cdot 55}{1922} \int_0^2 u \, du = \frac{10890}{1922} \int_0^2 u \, du

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Change of Variables
Double Integral
Jacobian Determinant

Formulas

Jacobian determinant formula: J = det(∂(x, y) / ∂(u, v))
Change of variables in double integrals: ∫∫_R f(x, y) dA = ∫∫_S f(g(u, v)) |J| du dv

Theorems

Change of Variables Theorem
Jacobian Determinant for Multivariable Integration

Suitable Grade Level

University Level (Calculus II/III)