Math Problem Statement

Evaluate the following integral for x > 9 using a trigonometric substitution: \[ \int \frac{1}{(16x^2 - 1296)^{3/2}} \, dx \]

Solution

To evaluate the integral

1(16x21296)32dx\int \frac{1}{(16x^2 - 1296)^{\frac{3}{2}}} \, dx

for x>9x > 9 using a trigonometric substitution, let's proceed as follows:

Step-by-Step Solution

  1. Rewrite the Expression: Start by factoring out the constant under the square root to simplify the expression. Notice that: 16x21296=16(x281)=16(x292).16x^2 - 1296 = 16(x^2 - 81) = 16(x^2 - 9^2).

  2. Choose the Substitution: Since we have x292x^2 - 9^2, this suggests a trigonometric substitution with x=9secθx = 9 \sec \theta, where x>9x > 9 corresponds to secθ1\sec \theta \geq 1 (or θ\theta in the range [0,π/2)[0, \pi/2)).

  3. Differentiate: With x=9secθx = 9 \sec \theta, we find that dx=9secθtanθdθ.dx = 9 \sec \theta \tan \theta \, d\theta.

  4. Substitute into the Integral: Substitute x=9secθx = 9 \sec \theta and dx=9secθtanθdθdx = 9 \sec \theta \tan \theta \, d\theta into the integral: 1(16x21296)32dx=1(1681sec2θ1296)329secθtanθdθ.\int \frac{1}{(16x^2 - 1296)^{\frac{3}{2}}} \, dx = \int \frac{1}{(16 \cdot 81 \sec^2 \theta - 1296)^{\frac{3}{2}}} \cdot 9 \sec \theta \tan \theta \, d\theta.

  5. Simplify the Expression Inside the Integral: Simplify the expression in the denominator: 1681sec2θ1296=1296(sec2θ1)=1296tan2θ.16 \cdot 81 \sec^2 \theta - 1296 = 1296 (\sec^2 \theta - 1) = 1296 \tan^2 \theta. Thus, (16x21296)32=(1296tan2θ)32=129632tan3θ=46656tan3θ.(16x^2 - 1296)^{\frac{3}{2}} = (1296 \tan^2 \theta)^{\frac{3}{2}} = 1296^{\frac{3}{2}} \tan^3 \theta = 46656 \tan^3 \theta.

  6. Rewrite the Integral: Substitute back into the integral: 146656tan3θ9secθtanθdθ=946656secθtan2θdθ.\int \frac{1}{46656 \tan^3 \theta} \cdot 9 \sec \theta \tan \theta \, d\theta = \frac{9}{46656} \int \frac{\sec \theta}{\tan^2 \theta} \, d\theta.

  7. Simplify Further: Rewrite secθtan2θ\frac{\sec \theta}{\tan^2 \theta} as cosθsin2θ=csc2θcotθ\frac{\cos \theta}{\sin^2 \theta} = \csc^2 \theta \cot \theta: =946656csc2θdθ.= \frac{9}{46656} \int \csc^2 \theta \, d\theta.

  8. Integrate: The integral of csc2θ\csc^2 \theta is cotθ-\cot \theta, so we have: 946656(cotθ)=946656cotθ.\frac{9}{46656} \cdot (-\cot \theta) = -\frac{9}{46656} \cot \theta.

  9. Back-Substitute: Since x=9secθx = 9 \sec \theta, we have secθ=x9\sec \theta = \frac{x}{9} and cotθ=x2819\cot \theta = \frac{\sqrt{x^2 - 81}}{9}. Substitute this back to obtain the result: 946656x2819=x28146656.-\frac{9}{46656} \cdot \frac{\sqrt{x^2 - 81}}{9} = -\frac{\sqrt{x^2 - 81}}{46656}.

Final Answer

1(16x21296)32dx=x28146656+C.\int \frac{1}{(16x^2 - 1296)^{\frac{3}{2}}} \, dx = -\frac{\sqrt{x^2 - 81}}{46656} + C.

Would you like additional steps or a deeper explanation of any part?

Related Questions

  1. How would you solve a similar integral with a different constant in place of 1296?
  2. Can trigonometric substitution be used for integrals involving x2+a2x^2 + a^2?
  3. What are some alternative methods for solving integrals of this type?
  4. How does trigonometric substitution compare to hyperbolic substitution?
  5. What is the importance of choosing the correct trigonometric identity in substitutions?

Tip

When performing trigonometric substitution, always simplify the expression first, as it often makes the substitution and integration process much easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution
Integral Calculus
Algebraic Manipulation

Formulas

Trigonometric substitution: x = a sec(θ) for integrals involving √(x^2 - a^2)
Differentiation: dx = a sec(θ) tan(θ) dθ
Simplification of trigonometric expressions

Theorems

Trigonometric substitution method
Integration of trigonometric functions

Suitable Grade Level

College Level (Calculus II)