Math Problem Statement

Show the steps/work please

Evaluate the improper integral \( \int_{-\infty}^{-1} x^{-\frac{8}{3}} \, dx \) with detailed steps.

Solution

To evaluate the improper integral

1x83dx,\int_{-\infty}^{-1} x^{-\frac{8}{3}} \, dx,

let's go through the steps to determine if this integral converges and find its value if possible.

Step 1: Set up the Integral

The given function x83x^{-\frac{8}{3}} has a negative exponent, making it undefined at x=0x = 0, and potentially divergent as xx \to -\infty. Since the interval of integration is (,1](-\infty, -1], we are dealing with an improper integral due to the unbounded lower limit.

Rewrite the integral with a limit to handle the improper bound:

1x83dx=limaa1x83dx.\int_{-\infty}^{-1} x^{-\frac{8}{3}} \, dx = \lim_{a \to -\infty} \int_{a}^{-1} x^{-\frac{8}{3}} \, dx.

Step 2: Integrate x83x^{-\frac{8}{3}}

To integrate x83x^{-\frac{8}{3}}, recall the power rule for integration:

xndx=xn+1n+1+C,for n1.\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad \text{for } n \neq -1.

In this case, n=83n = -\frac{8}{3}, so:

n+1=83+1=53.n + 1 = -\frac{8}{3} + 1 = -\frac{5}{3}.

Thus,

x83dx=x5353=35x53.\int x^{-\frac{8}{3}} \, dx = \frac{x^{-\frac{5}{3}}}{-\frac{5}{3}} = -\frac{3}{5} x^{-\frac{5}{3}}.

Step 3: Apply the Limits

Now, substitute back into the integral:

limaa1x83dx=lima[35x53]a1.\lim_{a \to -\infty} \int_{a}^{-1} x^{-\frac{8}{3}} \, dx = \lim_{a \to -\infty} \left[ -\frac{3}{5} x^{-\frac{5}{3}} \right]_{a}^{-1}.

Evaluating this at the bounds:

[ = \lim_{a \to -\infty} \left( -\frac{3}{5} \cdot (-1)^{-\frac{5}{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Improper Integrals
Integration

Formulas

Power Rule for Integration: \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \) for \( n \neq -1 \)

Theorems

Improper Integral Evaluation

Suitable Grade Level

College Level