Math Problem Statement

find the integral of 2x+1/ x^3+8x dx btn(3,1)

Solution

We need to compute the definite integral:

132x+1x3+8xdx.\int_{1}^{3} \frac{2x + 1}{x^3 + 8x} \, dx.

Step 1: Simplify the integrand

The denominator x3+8xx^3 + 8x can be factored as:

x3+8x=x(x2+8).x^3 + 8x = x(x^2 + 8).

Thus, the integral becomes:

132x+1x(x2+8)dx.\int_{1}^{3} \frac{2x + 1}{x(x^2 + 8)} \, dx.

Step 2: Decompose into partial fractions

We write the fraction:

2x+1x(x2+8)=Ax+Bx+Cx2+8.\frac{2x + 1}{x(x^2 + 8)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 8}.

Multiply through by the denominator x(x2+8)x(x^2 + 8) to get:

2x+1=A(x2+8)+(Bx+C)x.2x + 1 = A(x^2 + 8) + (Bx + C)x.

Expanding and grouping terms:

2x+1=Ax2+8A+Bx2+Cx.2x + 1 = A x^2 + 8A + Bx^2 + Cx.

Combine like terms:

2x+1=(A+B)x2+Cx+8A.2x + 1 = (A + B)x^2 + Cx + 8A.

Equating coefficients of x2x^2, xx, and the constant terms:

  1. A+B=0A + B = 0,
  2. C=2C = 2,
  3. 8A=1    A=188A = 1 \implies A = \frac{1}{8}.

From A+B=0A + B = 0, we get B=18B = -\frac{1}{8}.

Thus, the partial fraction decomposition is:

2x+1x(x2+8)=1/8x+18x+2x2+8.\frac{2x + 1}{x(x^2 + 8)} = \frac{1/8}{x} + \frac{-\frac{1}{8}x + 2}{x^2 + 8}.

Step 3: Rewrite the integral

Substitute the partial fractions:

132x+1x(x2+8)dx=131/8xdx+1318xx2+8dx+132x2+8dx.\int_{1}^{3} \frac{2x + 1}{x(x^2 + 8)} \, dx = \int_{1}^{3} \frac{1/8}{x} \, dx + \int_{1}^{3} \frac{-\frac{1}{8}x}{x^2 + 8} \, dx + \int_{1}^{3} \frac{2}{x^2 + 8} \, dx.

Step 4: Solve each term

First term:

131/8xdx=18131xdx=18lnx13=18(ln3ln1)=18ln3.\int_{1}^{3} \frac{1/8}{x} \, dx = \frac{1}{8} \int_{1}^{3} \frac{1}{x} \, dx = \frac{1}{8} \ln|x| \Big|_{1}^{3} = \frac{1}{8} (\ln 3 - \ln 1) = \frac{1}{8} \ln 3.

Second term:

1318xx2+8dx.\int_{1}^{3} \frac{-\frac{1}{8}x}{x^2 + 8} \, dx.

Let u=x2+8u = x^2 + 8, so du=2xdxdu = 2x \, dx. The limits for uu are:

  • When x=1x = 1, u=12+8=9u = 1^2 + 8 = 9,
  • When x=3x = 3, u=32+8=17u = 3^2 + 8 = 17.

The integral becomes:

189171udu=18lnu917=18(ln17ln9)=18ln(179).-\frac{1}{8} \int_{9}^{17} \frac{1}{u} \, du = -\frac{1}{8} \ln|u| \Big|_{9}^{17} = -\frac{1}{8} (\ln 17 - \ln 9) = -\frac{1}{8} \ln\left(\frac{17}{9}\right).

Third term:

132x2+8dx.\int_{1}^{3} \frac{2}{x^2 + 8} \, dx.

Factor x2+8=22+x2x^2 + 8 = 2^2 + x^2. The integral becomes:

132x2+22dx=131x2+22dx.\int_{1}^{3} \frac{2}{x^2 + 2^2} \, dx = \int_{1}^{3} \frac{1}{x^2 + 2^2} \, dx.

This is a standard arctangent formula:

1x2+a2dx=1aarctan(xa).\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right).

Here, a=2a = 2, so:

132x2+8dx=12arctan(x2)13.\int_{1}^{3} \frac{2}{x^2 + 8} \, dx = \frac{1}{2} \arctan\left(\frac{x}{2}\right) \Big|_{1}^{3}.

Evaluate:

12[arctan(32)arctan(12)].\frac{1}{2} \left[\arctan\left(\frac{3}{2}\right) - \arctan\left(\frac{1}{2}\right)\right].

Step 5: Combine results

The total integral is:

18ln318ln(179)+12[arctan(32)arctan(12)].\frac{1}{8} \ln 3 - \frac{1}{8} \ln\left(\frac{17}{9}\right) + \frac{1}{2} \left[\arctan\left(\frac{3}{2}\right) - \arctan\left(\frac{1}{2}\right)\right].

Simplify:

18ln(3917)+12[arctan(32)arctan(12)].\frac{1}{8} \ln\left(\frac{3 \cdot 9}{17}\right) + \frac{1}{2} \left[\arctan\left(\frac{3}{2}\right) - \arctan\left(\frac{1}{2}\right)\right].

This is the evaluated definite integral.

Let me know if you need further details or approximations! 😊


Questions:

  1. Do you need a numerical approximation for this integral?
  2. Would you like a step-by-step breakdown for partial fraction decomposition?
  3. Should I explain how arctangent integrals work in more detail?
  4. Do you need help with substitution techniques in integration?
  5. Would you like to verify the solution using numerical integration?

Tip:

When dealing with partial fractions, always double-check the decomposition coefficients to avoid errors in later steps!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integration
Partial Fraction Decomposition
Substitution Method
Standard Integrals involving Arctangent

Formulas

Partial fraction decomposition: A/x + (Bx + C)/(x^2 + k)
Integral of 1/x: ∫(1/x) dx = ln|x| + C
Integral of 1/(x^2 + a^2): ∫(1/(x^2 + a^2)) dx = (1/a) arctan(x/a) + C

Theorems

Fundamental Theorem of Calculus
Decomposition of Rational Functions into Partial Fractions

Suitable Grade Level

Grades 11-12, Undergraduate Calculus