Math Problem Statement

1. Evaluate the following expressions and simplify using positive indices for the second set of problems.

Solution

Let's go through the questions one by one and solve them.

1. Evaluate the following:

i. (24)(2^4)

24=162^4 = 16

ii. (32)1(3^2)^{-1}

32=9so(32)1=193^2 = 9 \quad \text{so} \quad (3^2)^{-1} = \frac{1}{9}

iii. (23)2+20(2^3)^2 + 2^0

(23)2=26=64and20=1so64+1=65(2^3)^2 = 2^{6} = 64 \quad \text{and} \quad 2^0 = 1 \quad \text{so} \quad 64 + 1 = 65

iv. (52)1+15(5^2)^1 + \frac{1}{5}

(52)1=25and15=0.2so25+0.2=25.2(5^2)^1 = 25 \quad \text{and} \quad \frac{1}{5} = 0.2 \quad \text{so} \quad 25 + 0.2 = 25.2

v. (40)×1(4^0) \times 1

40=1so1×1=14^0 = 1 \quad \text{so} \quad 1 \times 1 = 1

vi. (102)(10^2)

102=10010^2 = 100


2. Simplify the expression using positive indices:

i. (x3)4(x^3)^4

(x3)4=x12(x^3)^4 = x^{12}

ii. (p2)2(p^{-2})^2

(p2)2=p4(p^{-2})^2 = p^{-4}

iii. (a2b2)2(a^2 b^2)^2

(a2b2)2=a4b4(a^2 b^2)^2 = a^4 b^4

iv. (2x2)3(2x^2)^3

(2x2)3=23(x2)3=8x6(2x^2)^3 = 2^3 \cdot (x^2)^3 = 8x^6

v. x3x\frac{x^3}{x}

x3x=x31=x2\frac{x^3}{x} = x^{3-1} = x^2

vi. (a3b2)2\left( \frac{a^3}{b^2} \right)^2

(a3b2)2=a6b4\left( \frac{a^3}{b^2} \right)^2 = \frac{a^6}{b^4}

vii. (m3n2)2\left( \frac{m^3}{n^2} \right)^{-2}

(m3n2)2=n4m6\left( \frac{m^3}{n^2} \right)^{-2} = \frac{n^4}{m^6}

viii. (p2)4(p^{-2})^{-4}

(p2)4=p8(p^{-2})^{-4} = p^{8}


Would you like further clarification on any of the steps? Here are 5 related questions to practice further:

  1. What is the value of (53)2+30(5^3)^2 + 3^0?
  2. Simplify (x2y3)3\left( \frac{x^2}{y^3} \right)^3.
  3. Evaluate (72)0+(31)3(7^2)^0 + (3^1)^3.
  4. Simplify a4b3a2b2\frac{a^4 b^3}{a^2 b^2}.
  5. Solve 42+234^{-2} + 2^3.

Tip: When simplifying indices, remember to multiply the exponents when raising a power to another power!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Indices
Simplification of expressions

Formulas

a^m * a^n = a^(m+n)
(a^m)^n = a^(m*n)
a^0 = 1
a^-n = 1 / a^n

Theorems

Laws of Exponents

Suitable Grade Level

Grades 8-10