Let's evaluate the given exponential functions one by one:
1. f(x)=2x, find f(−3):
f(−3)=2−3=231=81
So, f(−3)=81.
2. f(x)=(31)x, find f(−2):
f(−2)=(31)−2=(13)2=32=9
So, f(−2)=9.
3. f(x)=4x, find f(−2):
f(−2)=4−2=421=161
So, f(−2)=161.
4. f(x)=5x, find f(−1):
f(−1)=5−1=51
So, f(−1)=51.
5. f(x)=(32)x, find f(2):
f(2)=(32)2=3222=94
So, f(2)=94.
6. f(x)=(34)x, find f(2):
f(2)=(34)2=3242=916
So, f(2)=916.
7. f(x)=6x, find f(−1):
f(−1)=6−1=61
So, f(−1)=61.
8. f(x)=5−x, find f(3):
f(3)=5−3=531=1251
So, f(3)=1251.
9. f(x)=(71)x, find f(1):
f(1)=(71)1=71
So, f(1)=71.
10. f(x)=(43)x, find f(−3):
f(−3)=(43)−3=(34)3=3343=2764
So, f(−3)=2764.
Summary of Results:
- f(−3)=81
- f(−2)=9
- f(−2)=161
- f(−1)=51
- f(2)=94
- f(2)=916
- f(−1)=61
- f(3)=1251
- f(1)=71
- f(−3)=2764
Would you like more details or have any further questions?
Here are 5 related questions to explore:
- What is the general formula for evaluating f(x)=ax for negative values of x?
- How does changing the base of an exponential function affect the graph of the function?
- What happens when the base of an exponential function is between 0 and 1?
- Can an exponential function ever equal zero? Why or why not?
- What is the inverse of an exponential function?
Tip: When dealing with negative exponents, remember that a−x=ax1.