Math Problem Statement

B. Evaluate the following exponential functions. (10 points)

  1. f(x) = 2 ^ x, f(- 3)

  2. f(x) = (1/3) ^ x, f(- 2)

    1. f(x) = 4 ^ x, f(- 2)
  3. f(x) = 5 ^ x, f(- 1)

  4. f(x) = (2/3) ^ x, f(2)

  5. f(x) = (4/3) ^ x, f(2)

  6. f(x) = 6 ^ x, f(- 1)

  7. f(x) = 5 ^ - x, f(3)

  8. f(x) = (1/7) ^ x, f(1)

  9. f(x) = (3/4) ^ x, f(- 3)

Solution

Let's evaluate the given exponential functions one by one:

1. f(x)=2xf(x) = 2^x, find f(3)f(-3):

f(3)=23=123=18f(-3) = 2^{-3} = \frac{1}{2^3} = \frac{1}{8} So, f(3)=18f(-3) = \frac{1}{8}.


2. f(x)=(13)xf(x) = \left(\frac{1}{3}\right)^x, find f(2)f(-2):

f(2)=(13)2=(31)2=32=9f(-2) = \left(\frac{1}{3}\right)^{-2} = \left(\frac{3}{1}\right)^2 = 3^2 = 9 So, f(2)=9f(-2) = 9.


3. f(x)=4xf(x) = 4^x, find f(2)f(-2):

f(2)=42=142=116f(-2) = 4^{-2} = \frac{1}{4^2} = \frac{1}{16} So, f(2)=116f(-2) = \frac{1}{16}.


4. f(x)=5xf(x) = 5^x, find f(1)f(-1):

f(1)=51=15f(-1) = 5^{-1} = \frac{1}{5} So, f(1)=15f(-1) = \frac{1}{5}.


5. f(x)=(23)xf(x) = \left(\frac{2}{3}\right)^x, find f(2)f(2):

f(2)=(23)2=2232=49f(2) = \left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9} So, f(2)=49f(2) = \frac{4}{9}.


6. f(x)=(43)xf(x) = \left(\frac{4}{3}\right)^x, find f(2)f(2):

f(2)=(43)2=4232=169f(2) = \left(\frac{4}{3}\right)^2 = \frac{4^2}{3^2} = \frac{16}{9} So, f(2)=169f(2) = \frac{16}{9}.


7. f(x)=6xf(x) = 6^x, find f(1)f(-1):

f(1)=61=16f(-1) = 6^{-1} = \frac{1}{6} So, f(1)=16f(-1) = \frac{1}{6}.


8. f(x)=5xf(x) = 5^{-x}, find f(3)f(3):

f(3)=53=153=1125f(3) = 5^{-3} = \frac{1}{5^3} = \frac{1}{125} So, f(3)=1125f(3) = \frac{1}{125}.


9. f(x)=(17)xf(x) = \left(\frac{1}{7}\right)^x, find f(1)f(1):

f(1)=(17)1=17f(1) = \left(\frac{1}{7}\right)^1 = \frac{1}{7} So, f(1)=17f(1) = \frac{1}{7}.


10. f(x)=(34)xf(x) = \left(\frac{3}{4}\right)^x, find f(3)f(-3):

f(3)=(34)3=(43)3=4333=6427f(-3) = \left(\frac{3}{4}\right)^{-3} = \left(\frac{4}{3}\right)^3 = \frac{4^3}{3^3} = \frac{64}{27} So, f(3)=6427f(-3) = \frac{64}{27}.


Summary of Results:

  1. f(3)=18f(-3) = \frac{1}{8}
  2. f(2)=9f(-2) = 9
  3. f(2)=116f(-2) = \frac{1}{16}
  4. f(1)=15f(-1) = \frac{1}{5}
  5. f(2)=49f(2) = \frac{4}{9}
  6. f(2)=169f(2) = \frac{16}{9}
  7. f(1)=16f(-1) = \frac{1}{6}
  8. f(3)=1125f(3) = \frac{1}{125}
  9. f(1)=17f(1) = \frac{1}{7}
  10. f(3)=6427f(-3) = \frac{64}{27}

Would you like more details or have any further questions?


Here are 5 related questions to explore:

  1. What is the general formula for evaluating f(x)=axf(x) = a^x for negative values of xx?
  2. How does changing the base of an exponential function affect the graph of the function?
  3. What happens when the base of an exponential function is between 0 and 1?
  4. Can an exponential function ever equal zero? Why or why not?
  5. What is the inverse of an exponential function?

Tip: When dealing with negative exponents, remember that ax=1axa^{-x} = \frac{1}{a^x}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Negative Exponents
Fractional Bases

Formulas

f(x) = a^x
Negative exponent rule: a^-x = 1/a^x

Theorems

Properties of Exponents
Exponentiation with Fractions

Suitable Grade Level

Grades 9-10