Math Problem Statement

Find ∬D​(4x+5y)dA where D={(x,y)∣x2+y2≤9,x≥0}.

Solution

To solve the double integral D(4x+5y)dA\iint_D (4x + 5y) \, dA where D={(x,y)x2+y29,x0}D = \{(x, y) \mid x^2 + y^2 \leq 9, x \geq 0\}, we first identify the region DD. This region represents the right half of a circle with radius 3 centered at the origin.

Step 1: Change to Polar Coordinates

In polar coordinates, we set:

  • x=rcosθx = r \cos \theta
  • y=rsinθy = r \sin \theta
  • The Jacobian dA=rdrdθdA = r \, dr \, d\theta

Step 2: Determine the Limits of Integration

Given the constraints:

  • x2+y29x^2 + y^2 \leq 9 translates to r29r^2 \leq 9 or 0r30 \leq r \leq 3.
  • x0x \geq 0 translates to 0θπ0 \leq \theta \leq \pi.

Step 3: Rewrite the Integral

The integral becomes:

D(4x+5y)dA=0π03(4(rcosθ)+5(rsinθ))rdrdθ\iint_D (4x + 5y) \, dA = \int_0^{\pi} \int_0^3 (4(r \cos \theta) + 5(r \sin \theta)) r \, dr \, d\theta

This simplifies to:

=0π03(4r2cosθ+5r2sinθ)drdθ= \int_0^{\pi} \int_0^3 (4r^2 \cos \theta + 5r^2 \sin \theta) \, dr \, d\theta

Step 4: Evaluate the Integral

First, we can evaluate the inner integral with respect to rr:

03(4r2cosθ+5r2sinθ)dr\int_0^3 (4r^2 \cos \theta + 5r^2 \sin \theta) \, dr

Calculating this gives:

= \frac{4}{3} (3^3) \cos \theta + \frac{5}{3} (3^3) \sin \theta = \frac{4 \cdot 27}{3} \cos \theta + \frac{5 \cdot 27}{3} \sin \theta = 36 \cos \theta + 45 \sin \theta$$ Now, substituting back into the outer integral: $$\int_0^{\pi} (36 \cos \theta + 45 \sin \theta) \, d\theta$$ ### Step 5: Evaluate the Outer Integral Calculating the two parts separately: 1. For $$36 \cos \theta$$: $$\int_0^{\pi} 36 \cos \theta \, d\theta = 36 [\sin \theta]_0^{\pi} = 36 (0 - 0) = 0$$ 2. For $$45 \sin \theta$$: \[ \int_0^{\pi} 45 \sin \theta \, d\theta = 45 [-\cos \theta]_0^{\pi} = 45 [-(-1 - 1)] = 45 \cdot 2 = 90 \] ### Final Result Combining the results, we have: $$\iint_D (4x + 5y) \, dA = 0 + 90 = 90$$ Thus, the value of the double integral is $$\boxed{90}$$. ### Questions for Further Exploration: 1. How does changing the bounds affect the value of the integral? 2. What happens if we calculate the integral using rectangular coordinates instead? 3. Can you explain why the integral of $$36 \cos \theta$$ resulted in zero? 4. How can we apply this method to different functions over similar regions? 5. What are the geometric interpretations of the integrals calculated? ### Tip: When working with integrals in polar coordinates, always ensure that your limits correctly reflect the circular region you are integrating over.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Double Integrals
Polar Coordinates
Regions of Integration

Formulas

Area element in polar coordinates dA = r dr dθ
Coordinate transformations: x = r cos(θ), y = r sin(θ)

Theorems

Polar coordinate integration

Suitable Grade Level

College Calculus II