Math Problem Statement

Evaluate the double integral

D

f(xy)dA

over the polar rectangular region D.

f(xy) = arctan

y

x

, where D = (r, 𝜃)  1 ≤ r ≤ 3,

𝜋

4

≤ 𝜃 ≤

𝜋

3

Solution

To evaluate the double integral of f(x,y)=arctan(yx)f(x, y) = \arctan\left(\frac{y}{x}\right) over the polar region DD, we’ll proceed with the following steps:

  1. Rewrite f(x,y)f(x, y) in Polar Coordinates:
    In polar coordinates, we have x=rcosθx = r \cos \theta and y=rsinθy = r \sin \theta. Therefore: yx=rsinθrcosθ=tanθ.\frac{y}{x} = \frac{r \sin \theta}{r \cos \theta} = \tan \theta. So, f(x,y)=arctan(yx)=θf(x, y) = \arctan\left(\frac{y}{x}\right) = \theta.

  2. Set Up the Integral in Polar Coordinates:
    The region DD is given by 1r31 \leq r \leq 3 and π4θπ3\frac{\pi}{4} \leq \theta \leq \frac{\pi}{3}. The area element dAdA in polar coordinates is rdrdθr \, dr \, d\theta.

    Therefore, the integral becomes: Df(x,y)dA=π4π313θrdrdθ.\iint_D f(x, y) \, dA = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \int_1^3 \theta \, r \, dr \, d\theta.

  3. Evaluate the Inner Integral with Respect to rr:
    We first integrate with respect to rr, treating θ\theta as a constant: 13θrdr=θ13rdr.\int_1^3 \theta \, r \, dr = \theta \int_1^3 r \, dr. Calculating 13rdr\int_1^3 r \, dr: 13rdr=r2213=322122=9212=82=4.\int_1^3 r \, dr = \left. \frac{r^2}{2} \right|_1^3 = \frac{3^2}{2} - \frac{1^2}{2} = \frac{9}{2} - \frac{1}{2} = \frac{8}{2} = 4. Thus, the inner integral is: 13θrdr=4θ.\int_1^3 \theta \, r \, dr = 4\theta.

  4. Evaluate the Outer Integral with Respect to θ\theta:
    Substitute 4θ4\theta into the outer integral: π4π34θdθ=4π4π3θdθ.\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 4\theta \, d\theta = 4 \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \theta \, d\theta. Calculating θdθ\int \theta \, d\theta: θdθ=θ22.\int \theta \, d\theta = \frac{\theta^2}{2}. So, π4π3θdθ=θ22π4π3=(π3)22(π4)22=π218π232.\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \theta \, d\theta = \left. \frac{\theta^2}{2} \right|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{\left(\frac{\pi}{3}\right)^2}{2} - \frac{\left(\frac{\pi}{4}\right)^2}{2} = \frac{\pi^2}{18} - \frac{\pi^2}{32}. To combine terms, find a common denominator (which is 288): π218=16π2288,π232=9π2288.\frac{\pi^2}{18} = \frac{16\pi^2}{288}, \quad \frac{\pi^2}{32} = \frac{9\pi^2}{288}. Thus, 16π22889π2288=7π2288.\frac{16\pi^2}{288} - \frac{9\pi^2}{288} = \frac{7\pi^2}{288}.

  5. Final Answer: Df(x,y)dA=47π2288=7π272.\iint_D f(x, y) \, dA = 4 \cdot \frac{7\pi^2}{288} = \frac{7\pi^2}{72}.

So, the value of the integral is: 7π272.\frac{7\pi^2}{72}.

Would you like a breakdown of any step or further details?


Relative Questions

  1. How do polar coordinates simplify integration in circular regions?
  2. What are the advantages of converting functions to polar coordinates?
  3. Can all integrals over circular regions be simplified using polar coordinates?
  4. Why is dA=rdrdθdA = r \, dr \, d\theta in polar coordinates?
  5. How does the arctangent function relate to the angle θ\theta in polar coordinates?

Tip

In polar integration, always remember to include rr in dA=rdrdθdA = r \, dr \, d\theta to account for the scaling in polar areas.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Double Integrals
Polar Coordinates
Trigonometric Functions

Formulas

f(x, y) in polar coordinates: f(x, y) = arctan(y/x) = θ
Area element in polar coordinates: dA = r dr dθ

Theorems

Conversion to Polar Coordinates
Fundamental Theorem of Calculus

Suitable Grade Level

College Level Calculus