Math Problem Statement

1. Evaluate the integral I = ∫₀¹ ∫₀ʸ e^(x-y) dx dy. 2. Sketch the region of integration of I and hence rewrite I with the order of integration reversed (do not evaluate this new expression). BONUS: Evaluate the line integral J = ∫₀ e^(2x-y²) dx - y e^(2x-y²) dy along the contour C = {(t², t) | 0 ≤ t ≤ 1} oriented from (0, 0) to (1, 1).

Solution

1. Evaluate the integral:

We start with: I=010yexydxdyI = \int_{0}^{1} \int_{0}^{y} e^{x-y} \, dx \, dy

Step 1: Simplify the inner integral with respect to xx:

The inner integral is: 0yexydx\int_{0}^{y} e^{x-y} \, dx Since exy=eyexe^{x-y} = e^{-y} \cdot e^{x}, treat eye^{-y} as a constant: 0yeyexdx=ey0yexdx\int_{0}^{y} e^{-y} e^{x} \, dx = e^{-y} \int_{0}^{y} e^{x} \, dx

Now evaluate 0yexdx\int_{0}^{y} e^{x} \, dx: 0yexdx=[ex]0y=eye0=ey1\int_{0}^{y} e^{x} \, dx = \left[e^{x}\right]_{0}^{y} = e^{y} - e^{0} = e^{y} - 1

Thus, the inner integral becomes: 0yexydx=ey(ey1)=1ey\int_{0}^{y} e^{x-y} \, dx = e^{-y} (e^{y} - 1) = 1 - e^{-y}

Step 2: Evaluate the outer integral with respect to yy:

Substitute the result of the inner integral: I=01(1ey)dyI = \int_{0}^{1} (1 - e^{-y}) \, dy Split the integral: I=011dy01eydyI = \int_{0}^{1} 1 \, dy - \int_{0}^{1} e^{-y} \, dy

Evaluate each term:

  1. 011dy=[y]01=10=1\int_{0}^{1} 1 \, dy = [y]_{0}^{1} = 1 - 0 = 1
  2. 01eydy=[ey]01=(e1e0)=(1/e1)=11/e\int_{0}^{1} e^{-y} \, dy = \left[-e^{-y}\right]_{0}^{1} = -(e^{-1} - e^{0}) = -(1/e - 1) = 1 - 1/e

Combine the results: I=1(11/e)=1eI = 1 - (1 - 1/e) = \frac{1}{e}

Final Result:

I=1eI = \frac{1}{e}


2. Reversing the order of integration:

The region of integration is defined by: 0xyand0y10 \leq x \leq y \quad \text{and} \quad 0 \leq y \leq 1

Reversing the order of integration requires expressing the bounds in terms of xx: 0y1andxy10 \leq y \leq 1 \quad \text{and} \quad x \leq y \leq 1

The integral becomes: I=01x1exydydxI = \int_{0}^{1} \int_{x}^{1} e^{x-y} \, dy \, dx


BONUS: Evaluate the line integral

The line integral is: J=Ce2xy2dxye2xy2dyJ = \int_{C} e^{2x - y^2} \, dx - y e^{2x - y^2} \, dy with the curve C:r(t)=(t2,t),t[0,1]C: \mathbf{r}(t) = (t^2, t), \, t \in [0, 1].

Step 1: Parameterize the integral

From r(t)=(t2,t)\mathbf{r}(t) = (t^2, t), we have: x=t2,y=t,dx=2tdt,dy=1dtx = t^2, \quad y = t, \quad dx = 2t \, dt, \quad dy = 1 \, dt

Substitute into the integral: J=01[e2t2t2(2t)te2t2t2(1)]dtJ = \int_{0}^{1} \left[ e^{2t^2 - t^2}(2t) - t e^{2t^2 - t^2}(1) \right] \, dt

Simplify: J=01[2tet2tet2]dt=01tet2dtJ = \int_{0}^{1} \left[ 2t e^{t^2} - t e^{t^2} \right] \, dt = \int_{0}^{1} t e^{t^2} \, dt

Step 2: Evaluate the integral

Use substitution: Let u=t2u = t^2, so du=2tdtdu = 2t \, dt. Adjust the bounds:

  • When t=0t = 0, u=0u = 0
  • When t=1t = 1, u=1u = 1

The integral becomes: 01tet2dt=1201eudu\int_{0}^{1} t e^{t^2} \, dt = \frac{1}{2} \int_{0}^{1} e^{u} \, du

Evaluate: 1201eudu=12[eu]01=12(e1e0)=12(e1)\frac{1}{2} \int_{0}^{1} e^{u} \, du = \frac{1}{2} \left[e^{u}\right]_{0}^{1} = \frac{1}{2} (e^{1} - e^{0}) = \frac{1}{2} (e - 1)

Final Result:

J=e12J = \frac{e - 1}{2}


Do you have any questions or need further clarification?

Related Questions:

  1. How can the region of integration be visualized geometrically?
  2. What are the benefits of reversing the order of integration?
  3. How does parameterization simplify line integrals in vector calculus?
  4. Can exye^{x-y} integrals be extended to higher dimensions?
  5. What alternative methods exist for evaluating the line integral JJ?

Tip:

Always sketch the region of integration for double integrals; it helps in correctly reversing the integration bounds!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double integrals
Reversing the order of integration
Line integrals
Parametrization

Formulas

∫∫_R f(x, y) dx dy
∫_C (M dx + N dy)
Parameterizing curves: x = f(t), y = g(t)

Theorems

Change of variables in integration
Evaluation of line integrals using parameterization

Suitable Grade Level

Undergraduate Calculus