Math Problem Statement

Calculate the line integral of a vector field along a path consisting of two line segments.

Solution

To solve this problem, we calculate the line integral of the vector field F\mathbf{F} along the path CC, which consists of two line segments. Let's denote the segments as C1C_1 (from (0,0,2)(0, 0, 2) to (3,0,0)(3, 0, 0)) and C2C_2 (from (3,0,0)(3, 0, 0) to (0,2,1)(0, 2, 1)).

The line integral is computed as: CFdr=C1Fdr+C2Fdr.\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}.

Step 1: Parametrize C1C_1

The line segment C1C_1 can be parametrized as: r1(t)=(1t)(0,0,2)+t(3,0,0)=(3t,0,22t),t[0,1].\mathbf{r}_1(t) = (1-t)(0, 0, 2) + t(3, 0, 0) = (3t, 0, 2-2t), \quad t \in [0, 1]. The derivative is: dr1dt=(3,0,2).\frac{d\mathbf{r}_1}{dt} = (3, 0, -2).

Step 2: Parametrize C2C_2

The line segment C2C_2 can be parametrized as: r2(t)=(1t)(3,0,0)+t(0,2,1)=(33t,2t,t),t[0,1].\mathbf{r}_2(t) = (1-t)(3, 0, 0) + t(0, 2, 1) = (3-3t, 2t, t), \quad t \in [0, 1]. The derivative is: dr2dt=(3,2,1).\frac{d\mathbf{r}_2}{dt} = (-3, 2, 1).

Step 3: Compute the line integrals

To compute each integral, we need the expression for F(r)\mathbf{F}(\mathbf{r}). If F\mathbf{F} is given, we substitute it into: CFdr=CFdrdtdt.\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} \, dt. If the vector field is unknown, we need it to proceed. Could you provide F\mathbf{F}?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Line Integrals
Parametrization
Vector Fields

Formulas

\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}
\mathbf{r}_1(t) = (1-t)(0, 0, 2) + t(3, 0, 0)
\mathbf{r}_2(t) = (1-t)(3, 0, 0) + t(0, 2, 1)
\int_C \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} \, dt

Theorems

Line Integral Theorem
Fundamental Theorem of Line Integrals

Suitable Grade Level

Grades 11-12