Math Problem Statement

The problem involves calculating the line integral of \( 7y\cos(2x) \, dx + 2xy \, dy \) along the closed curve \( C \), which consists of three line segments: 1. From \( (0, 0) \) to \( (4, 6) \) 2. From \( (4, 6) \) to \( (0, 6) \) 3. From \( (0, 6) \) to \( (0, 0) \).

Solution

The problem involves calculating the line integral of 7ycos(2x)dx+2xydy7y\cos(2x) \, dx + 2xy \, dy along the closed curve CC, which consists of three line segments:

  1. From (0,0)(0, 0) to (4,6)(4, 6)
  2. From (4,6)(4, 6) to (0,6)(0, 6)
  3. From (0,6)(0, 6) to (0,0)(0, 0).

We'll compute the line integral along each segment and sum the results. Here's the step-by-step solution:


Segment 1: From (0, 0) to (4, 6)

The parametric equations for this line segment are:
x=t,y=32t,where 0t4x = t, \quad y = \frac{3}{2}t, \quad \text{where } 0 \leq t \leq 4 Differentials:
dx=dt,dy=32dtdx = dt, \quad dy = \frac{3}{2} \, dt

Substituting these into the integral: C(7ycos(2x)dx+2xydy)=04[732tcos(2t)1+2t32t32]dt\int_C \left( 7y\cos(2x) \, dx + 2xy \, dy \right) = \int_0^4 \left[ 7 \cdot \frac{3}{2}t \cos(2t) \cdot 1 + 2 \cdot t \cdot \frac{3}{2}t \cdot \frac{3}{2} \right] dt

Simplify: 04[212tcos(2t)+92t2]dt\int_0^4 \left[ \frac{21}{2}t\cos(2t) + \frac{9}{2}t^2 \right] dt

Separate the terms: 21204tcos(2t)dt+9204t2dt\frac{21}{2} \int_0^4 t \cos(2t) \, dt + \frac{9}{2} \int_0^4 t^2 \, dt

  1. For 04tcos(2t)dt\int_0^4 t\cos(2t) \, dt, use integration by parts (u=tu = t, dv=cos(2t)dtdv = \cos(2t) dt): tcos(2t)dt=tsin(2t)2cos(2t)404\int t \cos(2t) \, dt = \frac{t \sin(2t)}{2} - \frac{\cos(2t)}{4} \Big|_0^4 Evaluate: [ = \left[ \frac{4 \sin(8)}{2} - \frac{\cos(8)}{4} \right] - \left[ 0 - \frac{\cos(0)}{4} \right] = 2\sin(8) - \frac{\cos(8) + 1}{4} ]

  2. For 04t2dt\int_0^4 t^2 \, dt: 04t2dt=[t33]04=643\int_0^4 t^2 \, dt = \left[ \frac{t^3}{3} \right]_0^4 = \frac{64}{3}

Combine results: Segment 1=212(2sin(8)cos(8)+14)+92643\int_{\text{Segment 1}} = \frac{21}{2} \left( 2\sin(8) - \frac{\cos(8) + 1}{4} \right) + \frac{9}{2} \cdot \frac{64}{3}


Segment 2: From (4, 6) to (0, 6)

For this horizontal line segment:
y=6y = 6, xx varies from 4 to 0. Thus:
dx=dt,dy=0dx = -dt, \quad dy = 0

Substitute into the integral: C(7ycos(2x)dx+2xydy)=4076cos(2x)(1)dx=4240cos(2x)dx\int_C \left( 7y\cos(2x) \, dx + 2xy \, dy \right) = \int_4^0 7 \cdot 6 \cos(2x) (-1) \, dx = -42 \int_4^0 \cos(2x) \, dx

Change limits to simplify: =4204cos(2x)dx= 42 \int_0^4 \cos(2x) \, dx

Evaluate cos(2x)dx\int \cos(2x) dx: cos(2x)dx=sin(2x)2\int \cos(2x) dx = \frac{\sin(2x)}{2}

So: 04cos(2x)dx=sin(8)20\int_0^4 \cos(2x) \, dx = \frac{\sin(8)}{2} - 0

Thus: Segment 2=42sin(8)2=21sin(8)\int_{\text{Segment 2}} = 42 \cdot \frac{\sin(8)}{2} = 21\sin(8)


Segment 3: From (0, 6) to (0, 0)

For this vertical line segment:
x=0x = 0, yy varies from 6 to 0. Thus:
dx=0,dy=dtdx = 0, \quad dy = -dt

Substitute into the integral: C(7ycos(2x)dx+2xydy)=6020y(1)dy=0\int_C \left( 7y\cos(2x) \, dx + 2xy \, dy \right) = \int_6^0 2 \cdot 0 \cdot y (-1) \, dy = 0


Final Answer

Combine the results from all three segments: C(7ycos(2x)dx+2xydy)=Segment 1+Segment 2+Segment 3\int_C \left( 7y\cos(2x) \, dx + 2xy \, dy \right) = \int_{\text{Segment 1}} + \int_{\text{Segment 2}} + \int_{\text{Segment 3}}

Substitute values: C=212(2sin(8)cos(8)+14)+92643+21sin(8)\int_C = \frac{21}{2} \left( 2\sin(8) - \frac{\cos(8) + 1}{4} \right) + \frac{9}{2} \cdot \frac{64}{3} + 21\sin(8)

Simplify for the final expression. Let me know if you'd like this simplified further!


Questions for Exploration:

  1. What are the advantages of using Green's Theorem to compute this integral instead of evaluating along each segment?
  2. How do parametric equations simplify line integrals on straight-line segments?
  3. Can we always switch limits of integration to simplify computation? Why?
  4. What are some real-world applications of line integrals like this?
  5. How would the integral change if the curve CC was a circle?

Tip:

When applying Green's Theorem, ensure the curve is positively oriented (counterclockwise) to match the theorem's conditions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Line integrals
Parametric equations
Integration by parts
Curve parametrization

Formulas

Line integral formula: \int_C (Pdx + Qdy)
Integration by parts: \int u dv = uv - \int v du
Parametric form for curve: x = f(t), y = g(t)

Theorems

Green's Theorem

Suitable Grade Level

Grades 11-12