Math Problem Statement

Use the form of the definition of the integral given in the theorem to evaluate the integral. 9 (x2 − 4x + 9) dx

1

Solution

To evaluate the integral 19(x24x+9)dx\int_1^9 (x^2 - 4x + 9) \, dx using the definition of the integral, we first find the antiderivative of the function f(x)=x24x+9f(x) = x^2 - 4x + 9. Then we apply the Fundamental Theorem of Calculus to calculate the definite integral.


Step 1: Find the Antiderivative

The given function is: f(x)=x24x+9f(x) = x^2 - 4x + 9 The antiderivative F(x)F(x) is calculated term by term:

  1. x2dx=x33\int x^2 \, dx = \frac{x^3}{3},
  2. 4xdx=2x2\int -4x \, dx = -2x^2,
  3. 9dx=9x\int 9 \, dx = 9x.

Thus, the antiderivative is: F(x)=x332x2+9x.F(x) = \frac{x^3}{3} - 2x^2 + 9x.


Step 2: Evaluate the Definite Integral

The definite integral is given by: 19(x24x+9)dx=F(9)F(1),\int_1^9 (x^2 - 4x + 9) \, dx = F(9) - F(1), where F(x)=x332x2+9xF(x) = \frac{x^3}{3} - 2x^2 + 9x.


Step 3: Compute F(9)F(9) and F(1)F(1)

  1. Compute F(9)F(9): F(9)=9332(92)+9(9).F(9) = \frac{9^3}{3} - 2(9^2) + 9(9). F(9)=72932(81)+81=243162+81=162.F(9) = \frac{729}{3} - 2(81) + 81 = 243 - 162 + 81 = 162.

  2. Compute F(1)F(1): F(1)=1332(12)+9(1).F(1) = \frac{1^3}{3} - 2(1^2) + 9(1). F(1)=132+9=13+7=223.F(1) = \frac{1}{3} - 2 + 9 = \frac{1}{3} + 7 = \frac{22}{3}.


Step 4: Subtract F(9)F(9) and F(1)F(1)

19(x24x+9)dx=F(9)F(1)=162223.\int_1^9 (x^2 - 4x + 9) \, dx = F(9) - F(1) = 162 - \frac{22}{3}. Convert 162162 to a fraction with denominator 3: 162=4863.162 = \frac{486}{3}. F(9)F(1)=4863223=4643.F(9) - F(1) = \frac{486}{3} - \frac{22}{3} = \frac{464}{3}.


Final Answer:

19(x24x+9)dx=4643.\int_1^9 (x^2 - 4x + 9) \, dx = \frac{464}{3}.


Would you like further details or assistance with any step?


Related Questions:

  1. How do you verify the antiderivative by differentiating it?
  2. What is the geometric interpretation of this integral?
  3. How does the Fundamental Theorem of Calculus connect derivatives and integrals?
  4. Can this integral be solved using numerical methods instead?
  5. How does the choice of bounds affect the result?

Tip:

When solving definite integrals, always simplify terms carefully after substitution to avoid errors with fractions or signs!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Antiderivatives

Formulas

∫ x^n dx = x^(n+1)/(n+1) + C for n ≠ -1
Fundamental Theorem of Calculus: ∫_a^b f(x) dx = F(b) - F(a), where F'(x) = f(x)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grade 11-12 or early college