Math Problem Statement

Evaluate the definite integral \(\int_{-1}^{5} (x^2 + 4x) \, dx\).

Solution

This integral problem involves evaluating:

15(x2+4x)dx\int_{-1}^{5} (x^2 + 4x) \, dx

Solution:

  1. Find the antiderivative of x2+4xx^2 + 4x:

    • The antiderivative of x2x^2 is x33\frac{x^3}{3}.
    • The antiderivative of 4x4x is 2x22x^2.

    So, the antiderivative of x2+4xx^2 + 4x is: F(x)=x33+2x2F(x) = \frac{x^3}{3} + 2x^2

  2. Evaluate the definite integral: Substitute the limits of integration (x=1x = -1 and x=5x = 5) into F(x)F(x): 15(x2+4x)dx=F(5)F(1)\int_{-1}^{5} (x^2 + 4x) \, dx = F(5) - F(-1)

    Compute F(5)F(5): F(5)=533+2(52)=1253+50=1253+1503=2753F(5) = \frac{5^3}{3} + 2(5^2) = \frac{125}{3} + 50 = \frac{125}{3} + \frac{150}{3} = \frac{275}{3}

    Compute F(1)F(-1): F(1)=(1)33+2(1)2=13+2=13+63=53F(-1) = \frac{(-1)^3}{3} + 2(-1)^2 = \frac{-1}{3} + 2 = \frac{-1}{3} + \frac{6}{3} = \frac{5}{3}

  3. Subtract F(1)F(-1) from F(5)F(5): F(5)F(1)=275353=2703=90F(5) - F(-1) = \frac{275}{3} - \frac{5}{3} = \frac{270}{3} = 90

Final Answer:

15(x2+4x)dx=90\int_{-1}^{5} (x^2 + 4x) \, dx = 90

Would you like further explanations or steps?


Here are 5 related questions for practice:

  1. What is the integral of x3+6x2x^3 + 6x^2 from 0 to 4?
  2. How do you compute an indefinite integral of 2x2+3x2x^2 + 3x?
  3. What is the geometric interpretation of a definite integral?
  4. How does changing the limits of integration affect the result of a definite integral?
  5. What are the properties of definite integrals (e.g., linearity)?

Tip: Always check the continuity of the function over the integration interval before evaluating a definite integral!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Definite Integrals
Antiderivatives

Formulas

\(\int x^n dx = \frac{x^{n+1}}{n+1} + C\)
Definite integral: \(\int_a^b f(x) dx = F(b) - F(a)\)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12