Math Problem Statement

Evaluate the definite integral. Integral from 1 to 3 StartFraction 8 left parenthesis ln x right parenthesis cubed Over x EndFraction dx Question content area bottom Part 1 Integral from 1 to 3 StartFraction 8 left parenthesis ln x right parenthesis cubed Over x EndFraction dx equals2.928 ​(Round to three decimal places as​ needed.)

Solution

To solve the definite integral

138(lnx)3xdx,\int_{1}^{3} \frac{8 (\ln x)^3}{x} \, dx,

we follow these steps:


Step 1: Recognize the Integration Formula

The integral is of the form: (lnx)nxdx=(lnx)n+1n+1+C.\int \frac{(\ln x)^n}{x} \, dx = \frac{(\ln x)^{n+1}}{n+1} + C.

Here, n=3n = 3, so we use this formula in the definite integral.


Step 2: Evaluate the Definite Integral

First, compute the indefinite integral: 8(lnx)3xdx=8(lnx)44.\int \frac{8 (\ln x)^3}{x} \, dx = 8 \cdot \frac{(\ln x)^4}{4}.

This simplifies to: 2(lnx)4+C.2 (\ln x)^4 + C.

Now evaluate the definite integral from 1 to 3: 138(lnx)3xdx=[2(lnx)4]13.\int_{1}^{3} \frac{8 (\ln x)^3}{x} \, dx = \left[ 2 (\ln x)^4 \right]_1^3.


Step 3: Substitute the Limits

Substitute the upper limit x=3x = 3: 2(ln3)4.2 (\ln 3)^4.

Substitute the lower limit x=1x = 1: 2(ln1)4.2 (\ln 1)^4.

Since ln1=0\ln 1 = 0, the lower limit evaluates to 0: 2(ln1)4=204=0.2 (\ln 1)^4 = 2 \cdot 0^4 = 0.

Thus, the definite integral becomes: 2(ln3)40=2(ln3)4.2 (\ln 3)^4 - 0 = 2 (\ln 3)^4.


Step 4: Compute the Numerical Value

The natural logarithm of 3 is approximately: ln31.0986.\ln 3 \approx 1.0986.

Raise this to the fourth power: (ln3)4=(1.0986)41.4648.(\ln 3)^4 = (1.0986)^4 \approx 1.4648.

Multiply by 2: 2(ln3)4=21.46482.9296.2 (\ln 3)^4 = 2 \cdot 1.4648 \approx 2.9296.


Final Answer:

2.930(rounded to three decimal places).\boxed{2.930 \, \text{(rounded to three decimal places)}}.


Do you want further details on this computation, or do you have additional questions?

Related Questions:

  1. How does the formula (lnx)nxdx=(lnx)n+1n+1\int \frac{(\ln x)^n}{x} dx = \frac{(\ln x)^{n+1}}{n+1} work?
  2. Can this technique be generalized for other values of nn in (lnx)n(\ln x)^n?
  3. What is the significance of the logarithmic term in this integral?
  4. How do logarithmic powers affect convergence or divergence in definite integrals?
  5. Can this integral be solved using substitution methods?

Tip: Always double-check limits of integration and confirm logarithmic values to avoid

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Logarithmic Functions

Formulas

Integral of (ln x)^n / x is ((ln x)^(n+1)) / (n+1)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12