Math Problem Statement

∫14​|2x−4|dx

Solution

To evaluate the integral:

2x4dx\int |2x - 4| \, dx

Step 1: Analyze the absolute value function

The absolute value function 2x4|2x - 4| changes sign at the point where 2x4=02x - 4 = 0. Solve for xx:

2x4=0    x=22x - 4 = 0 \implies x = 2

Thus, 2x4|2x - 4| is defined as:

  • 2x42x - 4 when x2x \geq 2,
  • (2x4)-(2x - 4) when x<2x < 2.

Step 2: Split the integral at x=2x = 2

Given the absolute value function, the integral can be split as: 2x4dx=12(2x4)dx+24(2x4)dx\int |2x - 4| \, dx = \int_{1}^{2} -(2x - 4) \, dx + \int_{2}^{4} (2x - 4) \, dx

Step 3: Evaluate each integral

First integral: 12(2x4)dx\int_{1}^{2} -(2x - 4) \, dx

12(2x4)dx=12(2x+4)dx\int_{1}^{2} -(2x - 4) \, dx = \int_{1}^{2} (-2x + 4) \, dx Find the antiderivative: (2x+4)dx=x2+4x+C\int (-2x + 4) \, dx = -x^2 + 4x + C Evaluate at bounds x=1x = 1 and x=2x = 2: [x2+4x]12=((2)2+4(2))((1)2+4(1))\left[ -x^2 + 4x \right]_{1}^{2} = \left( -(2)^2 + 4(2) \right) - \left( -(1)^2 + 4(1) \right) =(4+8)(1+4)=43=1= \left( -4 + 8 \right) - \left( -1 + 4 \right) = 4 - 3 = 1

Second integral: 24(2x4)dx\int_{2}^{4} (2x - 4) \, dx

24(2x4)dx\int_{2}^{4} (2x - 4) \, dx Find the antiderivative: (2x4)dx=x24x+C\int (2x - 4) \, dx = x^2 - 4x + C Evaluate at bounds x=2x = 2 and x=4x = 4: [x24x]24=((4)24(4))((2)24(2))\left[ x^2 - 4x \right]_{2}^{4} = \left( (4)^2 - 4(4) \right) - \left( (2)^2 - 4(2) \right) =(1616)(48)=0(4)=4= \left( 16 - 16 \right) - \left( 4 - 8 \right) = 0 - (-4) = 4

Step 4: Add the results

142x4dx=1+4=5\int_{1}^{4} |2x - 4| \, dx = 1 + 4 = 5

Final Answer:

5\boxed{5}

Let me know if you'd like further clarification or additional examples! 😊


Related Questions:

  1. How do you handle integrals involving other piecewise functions?
  2. What happens if the limits of integration include a critical point of the absolute value function?
  3. Can the integral be computed geometrically for 2x4|2x - 4|?
  4. How would this problem change if the limits were different?
  5. How do you generalize the approach for ax+b|ax + b|?

Tip:

Always identify the critical points of the absolute value function to properly split the integral into manageable parts.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integral
Piecewise Functions
Absolute Value

Formulas

∫|f(x)| dx = ∫ f(x) dx for f(x) ≥ 0, ∫ -f(x) dx for f(x) < 0
Antiderivative: ∫ ax + b dx = (a/2)x^2 + bx + C

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12