Evaluate the integral \( \int_{-1}^1 (|4x| + 2) \, dx \).
Solution
This integral involves an absolute value function, which needs to be handled by splitting the integral at the point where the expression inside the absolute value equals zero.
Given:
∫−11(∣4x∣+2)dx
The expression ∣4x∣ means that we must account for the sign of 4x:
When x≥0, ∣4x∣=4x,
When x<0, ∣4x∣=−4x.
Split the integral at x=0:
∫−11(∣4x∣+2)dx=∫−10((−4x)+2)dx+∫01(4x+2)dx.
Step 1: Compute ∫−10(−4x+2)dx
∫−10(−4x+2)dx=∫−10(−4x)dx+∫−102dx.
For ∫−10(−4x)dx:
∫−10(−4x)dx=[−2x2]−10=(−2(0)2)−(−2(−1)2)=0−(−2)=2.
For ∫−102dx:
∫−102dx=[2x]−10=(2(0))−(2(−1))=0−(−2)=2.
Thus:
∫−10(−4x+2)dx=2+2=4.
Step 2: Compute ∫01(4x+2)dx
∫01(4x+2)dx=∫01(4x)dx+∫012dx.
For ∫01(4x)dx:
∫01(4x)dx=[2x2]01=(2(1)2)−(2(0)2)=2−0=2.
For ∫012dx:
∫012dx=[2x]01=(2(1))−(2(0))=2−0=2.
Thus:
∫01(4x+2)dx=2+2=4.