Math Problem Statement

Evaluate the integral \( \int_{-1}^1 (|4x| + 2) \, dx \).

Solution

This integral involves an absolute value function, which needs to be handled by splitting the integral at the point where the expression inside the absolute value equals zero.

Given:

11(4x+2)dx\int_{-1}^1 (|4x| + 2) \, dx

  1. The expression 4x|4x| means that we must account for the sign of 4x4x:

    • When x0x \geq 0, 4x=4x|4x| = 4x,
    • When x<0x < 0, 4x=4x|4x| = -4x.
  2. Split the integral at x=0x = 0: 11(4x+2)dx=10((4x)+2)dx+01(4x+2)dx.\int_{-1}^1 (|4x| + 2) \, dx = \int_{-1}^0 ((-4x) + 2) \, dx + \int_{0}^1 (4x + 2) \, dx.

Step 1: Compute 10(4x+2)dx\int_{-1}^0 (-4x + 2) \, dx

10(4x+2)dx=10(4x)dx+102dx.\int_{-1}^0 (-4x + 2) \, dx = \int_{-1}^0 (-4x) \, dx + \int_{-1}^0 2 \, dx.

  • For 10(4x)dx\int_{-1}^0 (-4x) \, dx: 10(4x)dx=[2x2]10=(2(0)2)(2(1)2)=0(2)=2.\int_{-1}^0 (-4x) \, dx = \left[-2x^2\right]_{-1}^0 = \left(-2(0)^2\right) - \left(-2(-1)^2\right) = 0 - (-2) = 2.
  • For 102dx\int_{-1}^0 2 \, dx: 102dx=[2x]10=(2(0))(2(1))=0(2)=2.\int_{-1}^0 2 \, dx = \left[2x\right]_{-1}^0 = (2(0)) - (2(-1)) = 0 - (-2) = 2. Thus: 10(4x+2)dx=2+2=4.\int_{-1}^0 (-4x + 2) \, dx = 2 + 2 = 4.

Step 2: Compute 01(4x+2)dx\int_{0}^1 (4x + 2) \, dx

01(4x+2)dx=01(4x)dx+012dx.\int_{0}^1 (4x + 2) \, dx = \int_{0}^1 (4x) \, dx + \int_{0}^1 2 \, dx.

  • For 01(4x)dx\int_{0}^1 (4x) \, dx: 01(4x)dx=[2x2]01=(2(1)2)(2(0)2)=20=2.\int_{0}^1 (4x) \, dx = \left[2x^2\right]_{0}^1 = \left(2(1)^2\right) - \left(2(0)^2\right) = 2 - 0 = 2.
  • For 012dx\int_{0}^1 2 \, dx: 012dx=[2x]01=(2(1))(2(0))=20=2.\int_{0}^1 2 \, dx = \left[2x\right]_{0}^1 = (2(1)) - (2(0)) = 2 - 0 = 2. Thus: 01(4x+2)dx=2+2=4.\int_{0}^1 (4x + 2) \, dx = 2 + 2 = 4.

Step 3: Combine the results

11(4x+2)dx=10(4x+2)dx+01(4x+2)dx=4+4=8.\int_{-1}^1 (|4x| + 2) \, dx = \int_{-1}^0 (-4x + 2) \, dx + \int_{0}^1 (4x + 2) \, dx = 4 + 4 = 8.

Final Answer:

8\boxed{8}

Let me know if you'd like further clarification or have additional questions! Here are five related questions for further exploration:

  1. How do you integrate absolute value functions in general?
  2. What are the steps for determining where the expression inside an absolute value changes sign?
  3. How would the integral change if the limits were different (e.g., [2,2][-2, 2])?
  4. How can you interpret this integral geometrically?
  5. Can this problem be solved using symmetry?

Tip: Always visualize the absolute value function to identify the points where it transitions between positive and negative values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integration
Absolute Value Functions

Formulas

Integral of a sum: \( \int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx \)
Handling absolute value: \( |f(x)| = f(x) \text{ if } f(x) \geq 0; -f(x) \text{ if } f(x) < 0 \)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12