Math Problem Statement

Evaluate the definite integral: ∫(from 1 to 4) 3x^2 √(x^3 + x) dx

Solution

The given problem is to evaluate the definite integral:

143x2x3+xdx\int_{1}^{4} 3x^2 \sqrt{x^3 + x} \, dx

Solution:

  1. Substitution: Let: u=x3+xu = x^3 + x Then, the derivative is: du=(3x2+1)dxdu = (3x^2 + 1) dx

    From the integral, we see 3x2dx3x^2 dx appears directly, but we adjust for (+1)(+1): dx=du3x2+1dx = \frac{du}{3x^2 + 1}

  2. Adjust Limits: When x=1x = 1: u=13+1=2u = 1^3 + 1 = 2 When x=4x = 4: u=43+4=68u = 4^3 + 4 = 68

  3. Substituted Integral: Replace in the integral: 143x2x3+xdx=268udu1=268u12du\int_{1}^{4} 3x^2 \sqrt{x^3 + x} \, dx = \int_{2}^{68} \sqrt{u} \, \frac{du}{1} = \int_{2}^{68} u^{\frac{1}{2}} \, du

  4. Integrate u12u^{\frac{1}{2}}: u12du=u3232=23u32\int u^{\frac{1}{2}} \, du = \frac{u^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} u^{\frac{3}{2}}

  5. Apply Limits: Substituting the limits: 23[u32]268\frac{2}{3} \left[ u^{\frac{3}{2}} \right]_{2}^{68} Compute: 23[6832232]\frac{2}{3} \left[ 68^{\frac{3}{2}} - 2^{\frac{3}{2}} \right] Calculate terms:

    • 6832=683=17.635456.57668^{\frac{3}{2}} = \sqrt{68}^3 = 17.6^3 \approx 5456.576
    • 232=23=2.828311.3142^{\frac{3}{2}} = \sqrt{2}^3 = 2.828^3 \approx 11.314

    Subtract: 23(5456.57611.314)=235445.2623630.175\frac{2}{3} \left( 5456.576 - 11.314 \right) = \frac{2}{3} \cdot 5445.262 \approx 3630.175

Final Answer:

3630.175\boxed{3630.175}

Let me know if you'd like further clarification!


Expanding Questions:

  1. How do substitutions simplify evaluating definite integrals?
  2. What are other techniques to evaluate integrals involving square roots?
  3. How can we verify the result of an integral using a numerical approach?
  4. Can this integral be solved without substitution? If so, how?
  5. What happens if the limits of integration are reversed?

Tip:

Always verify the adjusted limits after substitution, as they must match the new variable of integration.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite integrals
Substitution method
Integration of powers
Changing limits during substitution

Formulas

∫ u^n du = (u^(n+1))/(n+1), n ≠ -1
Substitution: u = f(x), du = f'(x) dx

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grade 11-12 or early university level