Math Problem Statement

By using substitution u = √(x - 1), find ∫ (x^4 / (3√(x - 1))) dx.

Solution

The problem requires solving the integral:

x43x1dx\int \frac{x^4}{3 \sqrt{x-1}} \, dx

using the substitution u=x1u = \sqrt{x-1}. Let's proceed step-by-step:


Step 1: Substitution u=x1u = \sqrt{x-1}

This implies: u2=x1orx=u2+1.u^2 = x - 1 \quad \text{or} \quad x = u^2 + 1.

Now, differentiate x=u2+1x = u^2 + 1: dxdu=2udx=2udu.\frac{dx}{du} = 2u \quad \Rightarrow \quad dx = 2u \, du.


Step 2: Express the integrand in terms of uu

Replace xx and dxdx in the integral: x43x1dx(u2+1)43u2udu.\int \frac{x^4}{3 \sqrt{x-1}} \, dx \quad \Rightarrow \quad \int \frac{(u^2 + 1)^4}{3u} \cdot 2u \, du.

Simplify: (u2+1)43u2udu=23(u2+1)4du.\int \frac{(u^2 + 1)^4}{3u} \cdot 2u \, du = \frac{2}{3} \int (u^2 + 1)^4 \, du.


Step 3: Expand (u2+1)4(u^2 + 1)^4

Using the binomial theorem: (u2+1)4=k=04(4k)(u2)k(1)4k.(u^2 + 1)^4 = \sum_{k=0}^4 \binom{4}{k} (u^2)^k (1)^{4-k}. The expanded form is: (u2+1)4=u8+4u6+6u4+4u2+1.(u^2 + 1)^4 = u^8 + 4u^6 + 6u^4 + 4u^2 + 1.


Step 4: Integrate term-by-term

Substitute the expanded form into the integral: 23(u2+1)4du=23(u8+4u6+6u4+4u2+1)du.\frac{2}{3} \int (u^2 + 1)^4 \, du = \frac{2}{3} \int (u^8 + 4u^6 + 6u^4 + 4u^2 + 1) \, du.

Integrate each term: u8du=u99,u6du=u77,u4du=u55,u2du=u33,1du=u.\int u^8 \, du = \frac{u^9}{9}, \quad \int u^6 \, du = \frac{u^7}{7}, \quad \int u^4 \, du = \frac{u^5}{5}, \quad \int u^2 \, du = \frac{u^3}{3}, \quad \int 1 \, du = u.

Thus: 23(u8+4u6+6u4+4u2+1)du=23(u99+4u77+6u55+4u33+u).\frac{2}{3} \int (u^8 + 4u^6 + 6u^4 + 4u^2 + 1) \, du = \frac{2}{3} \left( \frac{u^9}{9} + \frac{4u^7}{7} + \frac{6u^5}{5} + \frac{4u^3}{3} + u \right).


Step 5: Simplify and substitute back u=x1u = \sqrt{x-1}

Multiply by 23\frac{2}{3}: 23(u99+4u77+6u55+4u33+u)=2u927+8u721+12u515+8u39+2u3.\frac{2}{3} \left( \frac{u^9}{9} + \frac{4u^7}{7} + \frac{6u^5}{5} + \frac{4u^3}{3} + u \right) = \frac{2u^9}{27} + \frac{8u^7}{21} + \frac{12u^5}{15} + \frac{8u^3}{9} + \frac{2u}{3}.

Substitute back u=x1u = \sqrt{x-1}: 23x43x1dx=2(x1)927+8(x1)721+12(x1)515+8(x1)39+2(x1)3.\frac{2}{3} \int \frac{x^4}{3 \sqrt{x-1}} \, dx = \frac{2 (\sqrt{x-1})^9}{27} + \frac{8 (\sqrt{x-1})^7}{21} + \frac{12 (\sqrt{x-1})^5}{15} + \frac{8 (\sqrt{x-1})^3}{9} + \frac{2 (\sqrt{x-1})}{3}.


Would you like further clarification or help simplifying this result? Let me know!


Related Questions:

  1. How do substitutions simplify integration problems involving square roots?
  2. What is the general rule for applying the binomial theorem to expand polynomials?
  3. How can one derive substitution formulas like u=x1u = \sqrt{x-1}?
  4. Why is it important to return to the original variable after solving the integral?
  5. Can similar substitutions help solve integrals with x+a\sqrt{x+a}?

Tip:

Always check your substitution by differentiating your transformed variables to ensure correctness!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Binomial Expansion

Formulas

u = √(x - 1)
x = u^2 + 1
dx = 2u du
Binomial Expansion: (a + b)^n = ∑ (nCk) * a^(n-k) * b^k

Theorems

Fundamental Theorem of Calculus
Binomial Theorem

Suitable Grade Level

Undergraduate Mathematics or Advanced High School Calculus