Math Problem Statement
Evaluate the definite integrall from 0 to 1/4. it is 2/sqrt(1-4x^2). dx
Solution
To evaluate the integral
Step 1: Recognize the form of the integral
The integrand is of the form , which resembles the derivative of .
Here, let: [ u = 2x, \quad \text{so
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Definite Integration
Trigonometric Substitution
Formulas
Integral of 1/sqrt(1-u^2) is arcsin(u) + C
Theorems
Fundamental Theorem of Calculus
Suitable Grade Level
Grades 11-12
Related Recommendation
Evaluate the Integral Using the Arcsine Rule
Definite Integral of sqrt(x - x^2) Using Trigonometric Substitution
Definite Integral of 1/((1+x^2)(sqrt(1-x^2))) from 0 to 1 using Trigonometric Substitution
Evaluate Definite Integral using Fundamental Theorem of Calculus: Integral 2 to √2 of dx/(x√(x^2 - 1))
Evaluate the Integral using Trigonometric Substitution