Math Problem Statement

To evaluate 

1/4

2

1 − (2x)2

 dx

0

,

 apply the  ---Select--- Arcsine Arctangent Rule.

1/4

1

1 − (2x)2

(2) dx

0

 =        1/4

0

 = 

 ---Select--- arcsin arctan 2 ⨯ 

1

4

 −  ---Select--- arcsin arctan (2 ⨯ 0)

 = 

𝜋

 − 

 = 

𝜋

Solution

To evaluate the given integral, the formula associated with arcsine (arcsin) is likely required, as the integrand resembles the derivative of arcsin(u)\arcsin(u). The integral can be analyzed step-by-step as follows:


Integral Setup:

01/411(2x)2dx\int_0^{1/4} \frac{1}{\sqrt{1 - (2x)^2}} \, dx

Step 1: Recognize the substitution

This form suggests the use of the arcsin integral formula: 11u2du=arcsin(u)+C\int \frac{1}{\sqrt{1 - u^2}} \, du = \arcsin(u) + C

Here, u=2xu = 2x. To simplify:

  1. Substitute u=2xu = 2x, so du=2dxdu = 2 \, dx.
  2. Therefore, dx=du2dx = \frac{du}{2}.

Change the limits accordingly:

  • When x=0x = 0, u=0u = 0.
  • When x=14x = \frac{1}{4}, u=12u = \frac{1}{2}.

Step 2: Update the integral

01/411(2x)2dx=1201/211u2du\int_0^{1/4} \frac{1}{\sqrt{1 - (2x)^2}} \, dx = \frac{1}{2} \int_0^{1/2} \frac{1}{\sqrt{1 - u^2}} \, du

Step 3: Evaluate the integral

Using the arcsin formula:

11u2du=arcsin(u)\int \frac{1}{\sqrt{1 - u^2}} \, du = \arcsin(u)

Apply this result: 1201/211u2du=12[arcsin(u)]01/2\frac{1}{2} \int_0^{1/2} \frac{1}{\sqrt{1 - u^2}} \, du = \frac{1}{2} \big[\arcsin(u)\big]_0^{1/2}

Step 4: Compute the definite integral

[ \frac{1}{2} \big[\arcsin(u)\big]_0^{1/2} = \frac{1}{2} \left[\arcsin\left(\frac{1}{2}\right) - \arcsin(0)\right] ]

From trigonometric values:

  • arcsin(12)=π6\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6},
  • arcsin(0)=0\arcsin(0) = 0.

Thus: [ \frac{1}{2} \left[\arcsin\left(\frac{1}{2}\right) - \arcsin(0)\right] = \frac{1}{2} \left[\frac{\pi}{6} - 0\right] = \frac{\pi}{12}. ]


Final Answer:

01/411(2x)2dx=π12.\int_0^{1/4} \frac{1}{\sqrt{1 - (2x)^2}} \, dx = \frac{\pi}{12}.


Let me know if you'd like a more detailed breakdown! Here are some related questions for practice:

  1. What is the formula for the derivative of arcsin(x)\arcsin(x)?
  2. How would the integral change if the limits were different, say 00 to 1/21/2?
  3. What is the value of arcsin(1)\arcsin(1) and why?
  4. Could we solve this problem using trigonometric substitution? If so, how?
  5. How is the arcsin function connected to right-angle triangles?

Tip: Always confirm the domain of your integrand to ensure the solution is valid, especially when working with functions like arcsin(x)\arcsin(x) and arccos(x)\arccos(x).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Trigonometric Functions
Inverse Trigonometric Functions

Formulas

∫ 1 / √(1 − u^2) du = arcsin(u) + C
Substitution: u = 2x, du = 2 dx

Theorems

Fundamental Theorem of Calculus
Inverse Trigonometric Integral Formula

Suitable Grade Level

Grades 11-12 or College Calculus