Math Problem Statement

Obtain the value using binominal expansion : (√5+√3)⁴-(√5-√3)⁴

Solution

To evaluate (5+3)4(53)4(\sqrt{5} + \sqrt{3})^4 - (\sqrt{5} - \sqrt{3})^4 using the binomial expansion, we proceed as follows:

Step 1: Write the Binomial Expansion

For any (a+b)n(a + b)^n, the expansion is: (a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k

For (5+3)4(\sqrt{5} + \sqrt{3})^4, we have: (5+3)4=(40)(5)4(3)0+(41)(5)3(3)1+(42)(5)2(3)2+(43)(5)1(3)3+(44)(5)0(3)4(\sqrt{5} + \sqrt{3})^4 = \binom{4}{0} (\sqrt{5})^4 (\sqrt{3})^0 + \binom{4}{1} (\sqrt{5})^3 (\sqrt{3})^1 + \binom{4}{2} (\sqrt{5})^2 (\sqrt{3})^2 + \binom{4}{3} (\sqrt{5})^1 (\sqrt{3})^3 + \binom{4}{4} (\sqrt{5})^0 (\sqrt{3})^4

Similarly, for (53)4(\sqrt{5} - \sqrt{3})^4, we use: (53)4=(40)(5)4(3)0+(41)(5)3(3)1+(42)(5)2(3)2+(43)(5)1(3)3+(44)(5)0(3)4(\sqrt{5} - \sqrt{3})^4 = \binom{4}{0} (\sqrt{5})^4 (-\sqrt{3})^0 + \binom{4}{1} (\sqrt{5})^3 (-\sqrt{3})^1 + \binom{4}{2} (\sqrt{5})^2 (-\sqrt{3})^2 + \binom{4}{3} (\sqrt{5})^1 (-\sqrt{3})^3 + \binom{4}{4} (\sqrt{5})^0 (-\sqrt{3})^4

Step 2: Combine Both Expansions

We subtract (53)4(\sqrt{5} - \sqrt{3})^4 from (5+3)4(\sqrt{5} + \sqrt{3})^4. Only the odd-power terms remain because the even-power terms cancel out. Thus: (5+3)4(53)4=2[(41)(5)3(3)+(43)(5)(3)3](\sqrt{5} + \sqrt{3})^4 - (\sqrt{5} - \sqrt{3})^4 = 2 \left[ \binom{4}{1} (\sqrt{5})^3 (\sqrt{3}) + \binom{4}{3} (\sqrt{5}) (\sqrt{3})^3 \right]

Step 3: Simplify Each Term

  • (41)=4\binom{4}{1} = 4, (43)=4\binom{4}{3} = 4
  • (5)3=55,(3)3=33(\sqrt{5})^3 = 5\sqrt{5}, (\sqrt{3})^3 = 3\sqrt{3}

Substituting: 2[4553+4533]2 \left[ 4 \cdot 5\sqrt{5} \cdot \sqrt{3} + 4 \cdot \sqrt{5} \cdot 3\sqrt{3} \right] =2[2015+1215]= 2 \left[ 20\sqrt{15} + 12\sqrt{15} \right] =23215= 2 \cdot 32\sqrt{15} =6415= 64\sqrt{15}

Final Answer:

(5+3)4(53)4=6415(\sqrt{5} + \sqrt{3})^4 - (\sqrt{5} - \sqrt{3})^4 = 64\sqrt{15}


Would you like me to break down any step further or verify the calculations?

Here are some related questions for exploration:

  1. What is the general formula for the binomial expansion?
  2. How do we determine which terms cancel when subtracting two binomial expansions?
  3. Can you calculate (5+3)6(53)6(\sqrt{5} + \sqrt{3})^6 - (\sqrt{5} - \sqrt{3})^6?
  4. How is symmetry in exponents used in such calculations?
  5. Can this approach be extended to (5+3)2n(53)2n(\sqrt{5} + \sqrt{3})^{2n} - (\sqrt{5} - \sqrt{3})^{2n}?

Tip: For problems involving differences of symmetric powers, focus on odd-power terms since even-power terms cancel out.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Properties of Exponents
Symmetry in Polynomial Expressions

Formulas

(a + b)^n = Σ [binomial_coefficient(n, k) * a^(n-k) * b^k]
Odd and even term cancellation in symmetric polynomial differences

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12