SolutionTo evaluate ( 5 + 3 ) 4 − ( 5 − 3 ) 4 (\sqrt{5} + \sqrt{3})^4 - (\sqrt{5} - \sqrt{3})^4 ( 5 + 3 ) 4 − ( 5 − 3 ) 4 using the binomial expansion, we proceed as follows:
Step 1: Write the Binomial Expansion
For any ( a + b ) n (a + b)^n ( a + b ) n , the expansion is:
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k (a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k ( a + b ) n = ∑ k = 0 n ( k n ) a n − k b k
For ( 5 + 3 ) 4 (\sqrt{5} + \sqrt{3})^4 ( 5 + 3 ) 4 , we have:
( 5 + 3 ) 4 = ( 4 0 ) ( 5 ) 4 ( 3 ) 0 + ( 4 1 ) ( 5 ) 3 ( 3 ) 1 + ( 4 2 ) ( 5 ) 2 ( 3 ) 2 + ( 4 3 ) ( 5 ) 1 ( 3 ) 3 + ( 4 4 ) ( 5 ) 0 ( 3 ) 4 (\sqrt{5} + \sqrt{3})^4 = \binom{4}{0} (\sqrt{5})^4 (\sqrt{3})^0 + \binom{4}{1} (\sqrt{5})^3 (\sqrt{3})^1 + \binom{4}{2} (\sqrt{5})^2 (\sqrt{3})^2 + \binom{4}{3} (\sqrt{5})^1 (\sqrt{3})^3 + \binom{4}{4} (\sqrt{5})^0 (\sqrt{3})^4 ( 5 + 3 ) 4 = ( 0 4 ) ( 5 ) 4 ( 3 ) 0 + ( 1 4 ) ( 5 ) 3 ( 3 ) 1 + ( 2 4 ) ( 5 ) 2 ( 3 ) 2 + ( 3 4 ) ( 5 ) 1 ( 3 ) 3 + ( 4 4 ) ( 5 ) 0 ( 3 ) 4
Similarly, for ( 5 − 3 ) 4 (\sqrt{5} - \sqrt{3})^4 ( 5 − 3 ) 4 , we use:
( 5 − 3 ) 4 = ( 4 0 ) ( 5 ) 4 ( − 3 ) 0 + ( 4 1 ) ( 5 ) 3 ( − 3 ) 1 + ( 4 2 ) ( 5 ) 2 ( − 3 ) 2 + ( 4 3 ) ( 5 ) 1 ( − 3 ) 3 + ( 4 4 ) ( 5 ) 0 ( − 3 ) 4 (\sqrt{5} - \sqrt{3})^4 = \binom{4}{0} (\sqrt{5})^4 (-\sqrt{3})^0 + \binom{4}{1} (\sqrt{5})^3 (-\sqrt{3})^1 + \binom{4}{2} (\sqrt{5})^2 (-\sqrt{3})^2 + \binom{4}{3} (\sqrt{5})^1 (-\sqrt{3})^3 + \binom{4}{4} (\sqrt{5})^0 (-\sqrt{3})^4 ( 5 − 3 ) 4 = ( 0 4 ) ( 5 ) 4 ( − 3 ) 0 + ( 1 4 ) ( 5 ) 3 ( − 3 ) 1 + ( 2 4 ) ( 5 ) 2 ( − 3 ) 2 + ( 3 4 ) ( 5 ) 1 ( − 3 ) 3 + ( 4 4 ) ( 5 ) 0 ( − 3 ) 4
Step 2: Combine Both Expansions
We subtract ( 5 − 3 ) 4 (\sqrt{5} - \sqrt{3})^4 ( 5 − 3 ) 4 from ( 5 + 3 ) 4 (\sqrt{5} + \sqrt{3})^4 ( 5 + 3 ) 4 . Only the odd-power terms remain because the even-power terms cancel out. Thus:
( 5 + 3 ) 4 − ( 5 − 3 ) 4 = 2 [ ( 4 1 ) ( 5 ) 3 ( 3 ) + ( 4 3 ) ( 5 ) ( 3 ) 3 ] (\sqrt{5} + \sqrt{3})^4 - (\sqrt{5} - \sqrt{3})^4 = 2 \left[ \binom{4}{1} (\sqrt{5})^3 (\sqrt{3}) + \binom{4}{3} (\sqrt{5}) (\sqrt{3})^3 \right] ( 5 + 3 ) 4 − ( 5 − 3 ) 4 = 2 [ ( 1 4 ) ( 5 ) 3 ( 3 ) + ( 3 4 ) ( 5 ) ( 3 ) 3 ]
Step 3: Simplify Each Term
( 4 1 ) = 4 \binom{4}{1} = 4 ( 1 4 ) = 4 , ( 4 3 ) = 4 \binom{4}{3} = 4 ( 3 4 ) = 4
( 5 ) 3 = 5 5 , ( 3 ) 3 = 3 3 (\sqrt{5})^3 = 5\sqrt{5}, (\sqrt{3})^3 = 3\sqrt{3} ( 5 ) 3 = 5 5 , ( 3 ) 3 = 3 3
Substituting:
2 [ 4 ⋅ 5 5 ⋅ 3 + 4 ⋅ 5 ⋅ 3 3 ] 2 \left[ 4 \cdot 5\sqrt{5} \cdot \sqrt{3} + 4 \cdot \sqrt{5} \cdot 3\sqrt{3} \right] 2 [ 4 ⋅ 5 5 ⋅ 3 + 4 ⋅ 5 ⋅ 3 3 ]
= 2 [ 20 15 + 12 15 ] = 2 \left[ 20\sqrt{15} + 12\sqrt{15} \right] = 2 [ 20 15 + 12 15 ]
= 2 ⋅ 32 15 = 2 \cdot 32\sqrt{15} = 2 ⋅ 32 15
= 64 15 = 64\sqrt{15} = 64 15
Final Answer:
( 5 + 3 ) 4 − ( 5 − 3 ) 4 = 64 15 (\sqrt{5} + \sqrt{3})^4 - (\sqrt{5} - \sqrt{3})^4 = 64\sqrt{15} ( 5 + 3 ) 4 − ( 5 − 3 ) 4 = 64 15
Would you like me to break down any step further or verify the calculations?
Here are some related questions for exploration:
What is the general formula for the binomial expansion?
How do we determine which terms cancel when subtracting two binomial expansions?
Can you calculate ( 5 + 3 ) 6 − ( 5 − 3 ) 6 (\sqrt{5} + \sqrt{3})^6 - (\sqrt{5} - \sqrt{3})^6 ( 5 + 3 ) 6 − ( 5 − 3 ) 6 ?
How is symmetry in exponents used in such calculations?
Can this approach be extended to ( 5 + 3 ) 2 n − ( 5 − 3 ) 2 n (\sqrt{5} + \sqrt{3})^{2n} - (\sqrt{5} - \sqrt{3})^{2n} ( 5 + 3 ) 2 n − ( 5 − 3 ) 2 n ?
Tip: For problems involving differences of symmetric powers, focus on odd-power terms since even-power terms cancel out.