The given expression is:
( 3 + 4 ) 4 + ( 3 − 1 ) 4 = 56 \left( \sqrt{3} + 4 \right)^4 + \left( \sqrt{3} - 1 \right)^4 = 56 ( 3 + 4 ) 4 + ( 3 − 1 ) 4 = 56
To solve this using the binomial theorem, we need to expand both terms separately. The binomial expansion for ( a + b ) n (a + b)^n ( a + b ) n is given by:
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k ( a + b ) n = ∑ k = 0 n ( k n ) a n − k b k
Step 1: Expand ( 3 + 4 ) 4 (\sqrt{3} + 4)^4 ( 3 + 4 ) 4
For the term ( 3 + 4 ) 4 (\sqrt{3} + 4)^4 ( 3 + 4 ) 4 , we apply the binomial expansion with a = 3 a = \sqrt{3} a = 3 , b = 4 b = 4 b = 4 , and n = 4 n = 4 n = 4 :
( 3 + 4 ) 4 = ( 4 0 ) ( 3 ) 4 ( 4 ) 0 + ( 4 1 ) ( 3 ) 3 ( 4 ) 1 + ( 4 2 ) ( 3 ) 2 ( 4 ) 2 + ( 4 3 ) ( 3 ) 1 ( 4 ) 3 + ( 4 4 ) ( 3 ) 0 ( 4 ) 4 (\sqrt{3} + 4)^4 = \binom{4}{0} (\sqrt{3})^4 (4)^0 + \binom{4}{1} (\sqrt{3})^3 (4)^1 + \binom{4}{2} (\sqrt{3})^2 (4)^2 + \binom{4}{3} (\sqrt{3})^1 (4)^3 + \binom{4}{4} (\sqrt{3})^0 (4)^4 ( 3 + 4 ) 4 = ( 0 4 ) ( 3 ) 4 ( 4 ) 0 + ( 1 4 ) ( 3 ) 3 ( 4 ) 1 + ( 2 4 ) ( 3 ) 2 ( 4 ) 2 + ( 3 4 ) ( 3 ) 1 ( 4 ) 3 + ( 4 4 ) ( 3 ) 0 ( 4 ) 4
Let's simplify this:
( 4 0 ) = 1 \binom{4}{0} = 1 ( 0 4 ) = 1 , ( 3 ) 4 = 9 (\sqrt{3})^4 = 9 ( 3 ) 4 = 9 , ( 4 ) 0 = 1 (4)^0 = 1 ( 4 ) 0 = 1
( 4 1 ) = 4 \binom{4}{1} = 4 ( 1 4 ) = 4 , ( 3 ) 3 = 3 3 (\sqrt{3})^3 = 3\sqrt{3} ( 3 ) 3 = 3 3 , ( 4 ) 1 = 4 (4)^1 = 4 ( 4 ) 1 = 4
( 4 2 ) = 6 \binom{4}{2} = 6 ( 2 4 ) = 6 , ( 3 ) 2 = 3 (\sqrt{3})^2 = 3 ( 3 ) 2 = 3 , ( 4 ) 2 = 16 (4)^2 = 16 ( 4 ) 2 = 16
( 4 3 ) = 4 \binom{4}{3} = 4 ( 3 4 ) = 4 , ( 3 ) 1 = 3 (\sqrt{3})^1 = \sqrt{3} ( 3 ) 1 = 3 , ( 4 ) 3 = 64 (4)^3 = 64 ( 4 ) 3 = 64
( 4 4 ) = 1 \binom{4}{4} = 1 ( 4 4 ) = 1 , ( 3 ) 0 = 1 (\sqrt{3})^0 = 1 ( 3 ) 0 = 1 , ( 4 ) 4 = 256 (4)^4 = 256 ( 4 ) 4 = 256
Substituting these values:
( 3 + 4 ) 4 = 1 ⋅ 9 + 4 ⋅ 3 3 ⋅ 4 + 6 ⋅ 3 ⋅ 16 + 4 ⋅ 3 ⋅ 64 + 1 ⋅ 256 (\sqrt{3} + 4)^4 = 1 \cdot 9 + 4 \cdot 3\sqrt{3} \cdot 4 + 6 \cdot 3 \cdot 16 + 4 \cdot \sqrt{3} \cdot 64 + 1 \cdot 256 ( 3 + 4 ) 4 = 1 ⋅ 9 + 4 ⋅ 3 3 ⋅ 4 + 6 ⋅ 3 ⋅ 16 + 4 ⋅ 3 ⋅ 64 + 1 ⋅ 256
Simplifying the terms:
( 3 + 4 ) 4 = 9 + 48 3 + 288 + 256 3 + 256 (\sqrt{3} + 4)^4 = 9 + 48\sqrt{3} + 288 + 256\sqrt{3} + 256 ( 3 + 4 ) 4 = 9 + 48 3 + 288 + 256 3 + 256
( 3 + 4 ) 4 = 553 + 304 3 (\sqrt{3} + 4)^4 = 553 + 304\sqrt{3} ( 3 + 4 ) 4 = 553 + 304 3
Step 2: Expand ( 3 − 1 ) 4 (\sqrt{3} - 1)^4 ( 3 − 1 ) 4
Similarly, for the second term ( 3 − 1 ) 4 (\sqrt{3} - 1)^4 ( 3 − 1 ) 4 , we use a = 3 a = \sqrt{3} a = 3 , b = − 1 b = -1 b = − 1 , and n = 4 n = 4 n = 4 . The expansion is:
( 3 − 1 ) 4 = ( 4 0 ) ( 3 ) 4 ( − 1 ) 0 + ( 4 1 ) ( 3 ) 3 ( − 1 ) 1 + ( 4 2 ) ( 3 ) 2 ( − 1 ) 2 + ( 4 3 ) ( 3 ) 1 ( − 1 ) 3 + ( 4 4 ) ( 3 ) 0 ( − 1 ) 4 (\sqrt{3} - 1)^4 = \binom{4}{0} (\sqrt{3})^4 (-1)^0 + \binom{4}{1} (\sqrt{3})^3 (-1)^1 + \binom{4}{2} (\sqrt{3})^2 (-1)^2 + \binom{4}{3} (\sqrt{3})^1 (-1)^3 + \binom{4}{4} (\sqrt{3})^0 (-1)^4 ( 3 − 1 ) 4 = ( 0 4 ) ( 3 ) 4 ( − 1 ) 0 + ( 1 4 ) ( 3 ) 3 ( − 1 ) 1 + ( 2 4 ) ( 3 ) 2 ( − 1 ) 2 + ( 3 4 ) ( 3 ) 1 ( − 1 ) 3 + ( 4 4 ) ( 3 ) 0 ( − 1 ) 4
Substitute the same binomial coefficients:
( 4 0 ) = 1 \binom{4}{0} = 1 ( 0 4 ) = 1 , ( 3 ) 4 = 9 (\sqrt{3})^4 = 9 ( 3 ) 4 = 9 , ( − 1 ) 0 = 1 (-1)^0 = 1 ( − 1 ) 0 = 1
( 4 1 ) = 4 \binom{4}{1} = 4 ( 1 4 ) = 4 , ( 3 ) 3 = 3 3 (\sqrt{3})^3 = 3\sqrt{3} ( 3 ) 3 = 3 3 , ( − 1 ) 1 = − 1 (-1)^1 = -1 ( − 1 ) 1 = − 1
( 4 2 ) = 6 \binom{4}{2} = 6 ( 2 4 ) = 6 , ( 3 ) 2 = 3 (\sqrt{3})^2 = 3 ( 3 ) 2 = 3 , ( − 1 ) 2 = 1 (-1)^2 = 1 ( − 1 ) 2 = 1
( 4 3 ) = 4 \binom{4}{3} = 4 ( 3 4 ) = 4 , ( 3 ) 1 = 3 (\sqrt{3})^1 = \sqrt{3} ( 3 ) 1 = 3 , ( − 1 ) 3 = − 1 (-1)^3 = -1 ( − 1 ) 3 = − 1
( 4 4 ) = 1 \binom{4}{4} = 1 ( 4 4 ) = 1 , ( 3 ) 0 = 1 (\sqrt{3})^0 = 1 ( 3 ) 0 = 1 , ( − 1 ) 4 = 1 (-1)^4 = 1 ( − 1 ) 4 = 1
Substituting:
( 3 − 1 ) 4 = 1 ⋅ 9 − 4 ⋅ 3 3 ⋅ 1 + 6 ⋅ 3 ⋅ 1 − 4 ⋅ 3 ⋅ 1 + 1 ⋅ 1 (\sqrt{3} - 1)^4 = 1 \cdot 9 - 4 \cdot 3\sqrt{3} \cdot 1 + 6 \cdot 3 \cdot 1 - 4 \cdot \sqrt{3} \cdot 1 + 1 \cdot 1 ( 3 − 1 ) 4 = 1 ⋅ 9 − 4 ⋅ 3 3 ⋅ 1 + 6 ⋅ 3 ⋅ 1 − 4 ⋅ 3 ⋅ 1 + 1 ⋅ 1
Simplifying the terms:
( 3 − 1 ) 4 = 9 − 12 3 + 18 − 4 3 + 1 (\sqrt{3} - 1)^4 = 9 - 12\sqrt{3} + 18 - 4\sqrt{3} + 1 ( 3 − 1 ) 4 = 9 − 12 3 + 18 − 4 3 + 1
( 3 − 1 ) 4 = 28 − 16 3 (\sqrt{3} - 1)^4 = 28 - 16\sqrt{3} ( 3 − 1 ) 4 = 28 − 16 3
Step 3: Add the Two Expansions
Now, we add the two expanded terms:
( 3 + 4 ) 4 + ( 3 − 1 ) 4 = ( 553 + 304 3 ) + ( 28 − 16 3 ) (\sqrt{3} + 4)^4 + (\sqrt{3} - 1)^4 = (553 + 304\sqrt{3}) + (28 - 16\sqrt{3}) ( 3 + 4 ) 4 + ( 3 − 1 ) 4 = ( 553 + 304 3 ) + ( 28 − 16 3 )
Simplifying:
553 + 28 + ( 304 3 − 16 3 ) = 581 + 288 3 553 + 28 + (304\sqrt{3} - 16\sqrt{3}) = 581 + 288\sqrt{3} 553 + 28 + ( 304 3 − 16 3 ) = 581 + 288 3
Step 4: Solve for the Equation
The given equation is:
( 3 + 4 ) 4 + ( 3 − 1 ) 4 = 56 (\sqrt{3} + 4)^4 + (\sqrt{3} - 1)^4 = 56 ( 3 + 4 ) 4 + ( 3 − 1 ) 4 = 56
However, we have:
581 + 288 3 = 56 581 + 288\sqrt{3} = 56 581 + 288 3 = 56
This does not match the equation, indicating that something went wrong or additional context is needed. Would you like me to clarify or check for other details?