Math Problem Statement

Solve this with binomial theorum

Solve this with binomial theorem

Solution

The given expression is:

(3+4)4+(31)4=56\left( \sqrt{3} + 4 \right)^4 + \left( \sqrt{3} - 1 \right)^4 = 56

To solve this using the binomial theorem, we need to expand both terms separately. The binomial expansion for (a+b)n(a + b)^n is given by:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Step 1: Expand (3+4)4(\sqrt{3} + 4)^4

For the term (3+4)4(\sqrt{3} + 4)^4, we apply the binomial expansion with a=3a = \sqrt{3}, b=4b = 4, and n=4n = 4:

(3+4)4=(40)(3)4(4)0+(41)(3)3(4)1+(42)(3)2(4)2+(43)(3)1(4)3+(44)(3)0(4)4(\sqrt{3} + 4)^4 = \binom{4}{0} (\sqrt{3})^4 (4)^0 + \binom{4}{1} (\sqrt{3})^3 (4)^1 + \binom{4}{2} (\sqrt{3})^2 (4)^2 + \binom{4}{3} (\sqrt{3})^1 (4)^3 + \binom{4}{4} (\sqrt{3})^0 (4)^4

Let's simplify this:

  • (40)=1\binom{4}{0} = 1, (3)4=9(\sqrt{3})^4 = 9, (4)0=1(4)^0 = 1
  • (41)=4\binom{4}{1} = 4, (3)3=33(\sqrt{3})^3 = 3\sqrt{3}, (4)1=4(4)^1 = 4
  • (42)=6\binom{4}{2} = 6, (3)2=3(\sqrt{3})^2 = 3, (4)2=16(4)^2 = 16
  • (43)=4\binom{4}{3} = 4, (3)1=3(\sqrt{3})^1 = \sqrt{3}, (4)3=64(4)^3 = 64
  • (44)=1\binom{4}{4} = 1, (3)0=1(\sqrt{3})^0 = 1, (4)4=256(4)^4 = 256

Substituting these values:

(3+4)4=19+4334+6316+4364+1256(\sqrt{3} + 4)^4 = 1 \cdot 9 + 4 \cdot 3\sqrt{3} \cdot 4 + 6 \cdot 3 \cdot 16 + 4 \cdot \sqrt{3} \cdot 64 + 1 \cdot 256

Simplifying the terms:

(3+4)4=9+483+288+2563+256(\sqrt{3} + 4)^4 = 9 + 48\sqrt{3} + 288 + 256\sqrt{3} + 256

(3+4)4=553+3043(\sqrt{3} + 4)^4 = 553 + 304\sqrt{3}

Step 2: Expand (31)4(\sqrt{3} - 1)^4

Similarly, for the second term (31)4(\sqrt{3} - 1)^4, we use a=3a = \sqrt{3}, b=1b = -1, and n=4n = 4. The expansion is:

(31)4=(40)(3)4(1)0+(41)(3)3(1)1+(42)(3)2(1)2+(43)(3)1(1)3+(44)(3)0(1)4(\sqrt{3} - 1)^4 = \binom{4}{0} (\sqrt{3})^4 (-1)^0 + \binom{4}{1} (\sqrt{3})^3 (-1)^1 + \binom{4}{2} (\sqrt{3})^2 (-1)^2 + \binom{4}{3} (\sqrt{3})^1 (-1)^3 + \binom{4}{4} (\sqrt{3})^0 (-1)^4

Substitute the same binomial coefficients:

  • (40)=1\binom{4}{0} = 1, (3)4=9(\sqrt{3})^4 = 9, (1)0=1(-1)^0 = 1
  • (41)=4\binom{4}{1} = 4, (3)3=33(\sqrt{3})^3 = 3\sqrt{3}, (1)1=1(-1)^1 = -1
  • (42)=6\binom{4}{2} = 6, (3)2=3(\sqrt{3})^2 = 3, (1)2=1(-1)^2 = 1
  • (43)=4\binom{4}{3} = 4, (3)1=3(\sqrt{3})^1 = \sqrt{3}, (1)3=1(-1)^3 = -1
  • (44)=1\binom{4}{4} = 1, (3)0=1(\sqrt{3})^0 = 1, (1)4=1(-1)^4 = 1

Substituting:

(31)4=194331+631431+11(\sqrt{3} - 1)^4 = 1 \cdot 9 - 4 \cdot 3\sqrt{3} \cdot 1 + 6 \cdot 3 \cdot 1 - 4 \cdot \sqrt{3} \cdot 1 + 1 \cdot 1

Simplifying the terms:

(31)4=9123+1843+1(\sqrt{3} - 1)^4 = 9 - 12\sqrt{3} + 18 - 4\sqrt{3} + 1

(31)4=28163(\sqrt{3} - 1)^4 = 28 - 16\sqrt{3}

Step 3: Add the Two Expansions

Now, we add the two expanded terms:

(3+4)4+(31)4=(553+3043)+(28163)(\sqrt{3} + 4)^4 + (\sqrt{3} - 1)^4 = (553 + 304\sqrt{3}) + (28 - 16\sqrt{3})

Simplifying:

553+28+(3043163)=581+2883553 + 28 + (304\sqrt{3} - 16\sqrt{3}) = 581 + 288\sqrt{3}

Step 4: Solve for the Equation

The given equation is:

(3+4)4+(31)4=56(\sqrt{3} + 4)^4 + (\sqrt{3} - 1)^4 = 56

However, we have:

581+2883=56581 + 288\sqrt{3} = 56

This does not match the equation, indicating that something went wrong or additional context is needed. Would you like me to clarify or check for other details?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Algebra
Exponents
Radicals

Formulas

Binomial Expansion Formula: (a + b)^n = ∑ (n choose k) a^(n-k) b^k

Theorems

Binomial Theorem

Suitable Grade Level

Grades 9-12