Math Problem Statement

(3 √(5) + √(3))(3 √(5) + √(3))

Solution

To simplify the expression (35+3)(35+3)(3 \sqrt{5} + \sqrt{3}) (3 \sqrt{5} + \sqrt{3}), we can use the formula for squaring a binomial, (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2.

Here, a=35a = 3 \sqrt{5} and b=3b = \sqrt{3}.

Step-by-step solution:

(35+3)(35+3)=(35)2+2(35)(3)+(3)2(3 \sqrt{5} + \sqrt{3}) (3 \sqrt{5} + \sqrt{3}) = (3 \sqrt{5})^2 + 2(3 \sqrt{5})(\sqrt{3}) + (\sqrt{3})^2

  1. First term: (35)2=9×5=45(3 \sqrt{5})^2 = 9 \times 5 = 45
  2. Second term: 2(35)(3)=6152(3 \sqrt{5})(\sqrt{3}) = 6 \sqrt{15}
  3. Third term: (3)2=3(\sqrt{3})^2 = 3

Now, add the results: 45+615+3=48+61545 + 6 \sqrt{15} + 3 = 48 + 6 \sqrt{15}

Thus, the simplified expression is: 48+615\boxed{48 + 6 \sqrt{15}}

Would you like further explanation or have any questions?

Related questions:

  1. How would you simplify (274)(274)(2 \sqrt{7} - 4)(2 \sqrt{7} - 4)?
  2. What happens if we multiply (35+3)(3 \sqrt{5} + \sqrt{3}) by (353)(3 \sqrt{5} - \sqrt{3})?
  3. Can you expand and simplify (26+2)(26+2)(2 \sqrt{6} + \sqrt{2})(2 \sqrt{6} + \sqrt{2})?
  4. How do we simplify an expression involving cube roots instead of square roots?
  5. What is the geometric interpretation of squaring a binomial involving square roots?

Tip:

Always remember that (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2 — a handy tool for quickly expanding binomials!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion
Square Roots

Formulas

(a + b)^2 = a^2 + 2ab + b^2

Theorems

Binomial Theorem

Suitable Grade Level

Grades 9-10