Math Problem Statement

ONLY ANSWERS DONT SHOW WORK

Use the rules for logarithms to evaluate the following expression: 10^{log(7.6)}

Solution

The answer to 10log(7.6)10^{\log(7.6)} is 7.67.6.

Would you like to see more details or ask further questions? Here are five related questions for practice:

  1. What is 10log(12.5)10^{\log(12.5)}?
  2. How do we evaluate 5log5(20)5^{\log_5(20)}?
  3. What is the result of 3log3(81)3^{\log_3(81)}?
  4. How does the base of the logarithm affect expressions like aloga(x)a^{\log_a(x)}?
  5. How can we simplify 2log2(16)2^{\log_2(16)}?

Tip: Remember, aloga(x)=xa^{\log_a(x)} = x holds true for any positive base aa and positive xx.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Functions
Exponentiation

Formulas

a^{log_a(x)} = x

Theorems

Power of a Logarithm Theorem

Suitable Grade Level

Grades 10-12