Math Problem Statement

Choose the two points below that refer to the same point as left parenthesis 3 comma StartFraction 7 pi Over 4 EndFraction right parenthesis . A.left parenthesis negative 3 comma StartFraction 11 pi Over 4 EndFraction right parenthesis left parenthesis negative 3 comma StartFraction 11 pi Over 4 EndFraction right parenthesis B.left parenthesis 3 comma StartFraction 9 pi Over 4 EndFraction right parenthesis left parenthesis 3 comma StartFraction 9 pi Over 4 EndFraction right parenthesis C.left parenthesis 3 comma StartFraction 11 pi Over 4 EndFraction right parenthesis left parenthesis 3 comma StartFraction 11 pi Over 4 EndFraction right parenthesis D.left parenthesis negative 3 comma StartFraction 9 pi Over 4 EndFraction right parenthesis left parenthesis negative 3 comma StartFraction 9 pi Over 4 EndFraction right parenthesis E.left parenthesis negative 3 comma StartFraction 15 pi Over 4 EndFraction right parenthesis left parenthesis negative 3 comma StartFraction 15 pi Over 4 EndFraction right parenthesis F.left parenthesis 3 comma StartFraction 15 pi Over 4 EndFraction right parenthesis left parenthesis 3 comma StartFraction 15 pi Over 4 EndFraction right parenthesis

Solution

The point (3,7π4)(3, \frac{7\pi}{4}) is given in polar coordinates, where 33 is the radius and 7π4\frac{7\pi}{4} is the angle in radians.

In polar coordinates, a point can have multiple representations by:

  1. Adding or subtracting multiples of 2π2\pi to the angle (since 2π2\pi represents one full revolution).
  2. Reversing the sign of the radius and adding π\pi to the angle (this reflects the point across the origin).

Step-by-step analysis:

  1. Equivalent angles for 7π4\frac{7\pi}{4}: Adding 2π2\pi: 7π4+2π=7π4+8π4=15π4\frac{7\pi}{4} + 2\pi = \frac{7\pi}{4} + \frac{8\pi}{4} = \frac{15\pi}{4} Subtracting 2π2\pi: 7π42π=7π48π4=π4\frac{7\pi}{4} - 2\pi = \frac{7\pi}{4} - \frac{8\pi}{4} = -\frac{\pi}{4}

  2. Reversing the radius 33: For 3-3, the angle becomes: 7π4+π=7π4+4π4=11π4\frac{7\pi}{4} + \pi = \frac{7\pi}{4} + \frac{4\pi}{4} = \frac{11\pi}{4}

Check the options:

  • A: (3,11π4)(-3, \frac{11\pi}{4}) matches the reversed radius and the adjusted angle. ✅
  • B: (3,9π4)(3, \frac{9\pi}{4}): 9π47π4\frac{9\pi}{4} \neq \frac{7\pi}{4}. ❌
  • C: (3,11π4)(3, \frac{11\pi}{4}): 11π47π4\frac{11\pi}{4} \neq \frac{7\pi}{4}. ❌
  • D: (3,9π4)(-3, \frac{9\pi}{4}): 9π47π4\frac{9\pi}{4} \neq \frac{7\pi}{4}. ❌
  • E: (3,15π4)(-3, \frac{15\pi}{4}): 15π411π4\frac{15\pi}{4} \neq \frac{11\pi}{4}. ❌
  • F: (3,15π4)(3, \frac{15\pi}{4}) matches the equivalent angle of 15π4\frac{15\pi}{4} by adding 2π2\pi. ✅

Final Answer:

The two points that refer to the same point as (3,7π4)(3, \frac{7\pi}{4}) are:

  • A: (3,11π4)(-3, \frac{11\pi}{4})
  • F: (3,15π4)(3, \frac{15\pi}{4})

Would you like further clarification or more examples?


Related Questions:

  1. How are polar coordinates converted to Cartesian coordinates?
  2. What is the significance of adding 2π2\pi to an angle in polar coordinates?
  3. How do you reflect points across the origin in polar coordinates?
  4. Why does reversing the radius require adding π\pi to the angle?
  5. Can you convert between degrees and radians for polar coordinates?

Tip: Remember, angles in polar coordinates are periodic with a period of 2π2\pi, so adding/subtracting 2π2\pi does not change the point's position.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar Coordinates
Angle Periodicity
Reflection Across Origin

Formulas

Equivalent Angle: θ ± 2π
Reversed Radius: θ + π

Theorems

Periodicity of Angles in Polar Coordinates
Reflection Properties in Polar Coordinates

Suitable Grade Level

Grades 10-12