Math Problem Statement

Plot the point whose polar coordinates are given and find the Cartesian coordinates of the point for the following: (a) (6, 4π/3), (b) (-4, 3π/4), (c) (-5, -π/3).

Solution

Let's solve the polar to Cartesian coordinate conversions based on the given points in the image. The formula to convert from polar coordinates (r,θ)(r, \theta) to Cartesian coordinates (x,y)(x, y) is:

x=rcos(θ),y=rsin(θ)x = r \cos(\theta), \quad y = r \sin(\theta)

(a) (6,4π3)\left( 6, \frac{4\pi}{3} \right)

Here, r=6r = 6 and θ=4π3\theta = \frac{4\pi}{3}.

  1. x=6cos(4π3)x = 6 \cos\left(\frac{4\pi}{3}\right)

    • cos(4π3)=12\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}
    • x=6×(12)=3x = 6 \times \left(-\frac{1}{2}\right) = -3
  2. y=6sin(4π3)y = 6 \sin\left(\frac{4\pi}{3}\right)

    • sin(4π3)=32\sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}
    • y=6×(32)=33y = 6 \times \left(-\frac{\sqrt{3}}{2}\right) = -3\sqrt{3}

So, (x,y)=(3,33)(x, y) = (-3, -3\sqrt{3}).


(b) (4,3π4)\left( -4, \frac{3\pi}{4} \right)

Here, r=4r = -4 and θ=3π4\theta = \frac{3\pi}{4}.

  1. x=4cos(3π4)x = -4 \cos\left(\frac{3\pi}{4}\right)

    • cos(3π4)=22\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}
    • x=4×(22)=22x = -4 \times \left(-\frac{\sqrt{2}}{2}\right) = 2\sqrt{2}
  2. y=4sin(3π4)y = -4 \sin\left(\frac{3\pi}{4}\right)

    • sin(3π4)=22\sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}
    • y=4×22=22y = -4 \times \frac{\sqrt{2}}{2} = -2\sqrt{2}

So, (x,y)=(22,22)(x, y) = (2\sqrt{2}, -2\sqrt{2}).


(c) (5,π3)\left( -5, -\frac{\pi}{3} \right)

Here, r=5r = -5 and θ=π3\theta = -\frac{\pi}{3}.

  1. x=5cos(π3)x = -5 \cos\left(-\frac{\pi}{3}\right)

    • cos(π3)=12\cos\left(-\frac{\pi}{3}\right) = \frac{1}{2}
    • x=5×12=52x = -5 \times \frac{1}{2} = -\frac{5}{2}
  2. y=5sin(π3)y = -5 \sin\left(-\frac{\pi}{3}\right)

    • sin(π3)=32\sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}
    • y=5×(32)=532y = -5 \times \left(-\frac{\sqrt{3}}{2}\right) = \frac{5\sqrt{3}}{2}

So, (x,y)=(52,532)(x, y) = \left(-\frac{5}{2}, \frac{5\sqrt{3}}{2}\right).


Final answers:

(a) (x,y)=(3,33)(x, y) = (-3, -3\sqrt{3})

(b) (x,y)=(22,22)(x, y) = (2\sqrt{2}, -2\sqrt{2})

(c) (x,y)=(52,532)(x, y) = \left(-\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)

Would you like further details or have any questions?

Here are some related questions to consider:

  1. How can you convert between Cartesian and polar coordinates?
  2. What is the significance of a negative radius in polar coordinates?
  3. How does the unit circle help in determining sine and cosine values?
  4. What are the typical applications of polar coordinates in real life?
  5. How does changing the angle θ\theta affect the point's position in polar coordinates?

Tip: To easily remember trigonometric values, it helps to visualize the unit circle, where cosine corresponds to the x-coordinate and sine to the y-coordinate of a point on the circle.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar Coordinates
Cartesian Coordinates
Trigonometry

Formulas

x = r * cos(θ)
y = r * sin(θ)

Theorems

Trigonometric identities
Unit circle

Suitable Grade Level

Grades 9-12