Math Problem Statement
Solution
To find the equation of a line with a given slope and point, we use the point-slope form of a line equation:
where:
- (the slope),
- (the point the line passes through).
Step 1: Substitute the values
which simplifies to:
Step 2: Distribute the slope
Step 3: Solve for by isolating it on one side
Answer
The equation of the line is:
So, the correct option is:
Would you like a detailed breakdown of each step or have any other questions?
Here are some related questions to deepen your understanding:
- How do you find the y-intercept of a line given a point and the slope?
- What is the general form of a linear equation and how does it relate to the point-slope form?
- How would the equation change if the slope were negative, say ?
- How can we verify if a given point lies on a specific line?
- What is the difference between point-slope form and slope-intercept form?
Tip: To quickly verify your solution, substitute the given point into your final equation to see if it satisfies the equation.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Linear Equations
Slope-Intercept Form
Formulas
Point-slope form: y - y1 = m(x - x1)
Slope-intercept form: y = mx + b
Theorems
-
Suitable Grade Level
Grades 8-10
Related Recommendation
Write a Line Equation in Point-Slope Form: Slope 1/2 Through (10, -8)
Find the Equation of a Line Passing Through (-8, 4) with Slope -1/2
Find the Equation of a Line with Slope -5 Through Point (1, -9)
Equation of Line Passing Through Point (-6, -8) with Slope 1/2
Write a Linear Equation Given a Point and Slope