Math Problem Statement

Номер 12 умови задачі

Номер 12 умови задачі

Solution

In the provided image, for variant 12, the table gives the probabilities p(x1),p(x2),p(x3),p(x4),p(x5),p(x6)p(x_1), p(x_2), p(x_3), p(x_4), p(x_5), p(x_6) and the symbol durations τ1,τ2,τ3,τ4,τ5,τ6\tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6. For this specific variant:

  • p(x1)=0.14p(x_1) = 0.14

  • p(x2)=0.29p(x_2) = 0.29

  • p(x3)=0.27p(x_3) = 0.27

  • p(x4)=0.14p(x_4) = 0.14

  • p(x5)=0.04p(x_5) = 0.04

  • p(x6)=0.12p(x_6) = 0.12

  • τ1=0.2\tau_1 = 0.2 ms

  • τ2=0.1\tau_2 = 0.1 ms

  • τ3=0.5\tau_3 = 0.5 ms

  • τ4=1.5\tau_4 = 1.5 ms

  • τ5=7.3\tau_5 = 7.3 ms

  • τ6=4.8\tau_6 = 4.8 ms

To solve the problem of calculating entropy HH, average duration τ\tau, productivity H/τH/\tau, and redundancy RR, we will proceed step by step.

1. Entropy HH

The entropy formula is: H=i=16p(xi)log2(p(xi))H = -\sum_{i=1}^{6} p(x_i) \log_2(p(x_i))

2. Average Duration τ\tau

The average symbol duration is calculated as: τ=i=16p(xi)τi\tau = \sum_{i=1}^{6} p(x_i) \tau_i

3. Productivity

Productivity is: Productivity=Hτ\text{Productivity} = \frac{H}{\tau}

4. Redundancy

Redundancy is: R=1Hlog2MR = 1 - \frac{H}{\log_2 M} where M=6M = 6 (the size of the alphabet).

I will now calculate these values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Information Theory
Entropy
Probability Distributions

Formulas

Entropy: H = -∑ p(x_i) log2(p(x_i))
Average Symbol Duration: τ = ∑ p(x_i) τ_i
Productivity: H / τ
Redundancy: R = 1 - (H / log2(M))

Theorems

Shannon's Entropy Theorem

Suitable Grade Level

University Level - Information Theory