Math Problem Statement

Evaluate \iint_R \frac{y^2}{x^2 + y^2} \, dA, where \( R \) is the region between the circles \( x^2 + y^2 = 16 \) and \( x^2 + y^2 = 100 \).

Solution

To solve the given problem, let us change the double integral to polar coordinates and evaluate it step by step. Here's the process:


Problem:

Evaluate
Ry2x2+y2dA,\iint_R \frac{y^2}{x^2 + y^2} \, dA, where RR is the region between the circles x2+y2=16x^2 + y^2 = 16 and x2+y2=100x^2 + y^2 = 100.


Step 1: Change to Polar Coordinates

In polar coordinates: x=rcosθ,y=rsinθ,x2+y2=r2,dA=rdrdθ.x = r \cos\theta, \quad y = r \sin\theta, \quad x^2 + y^2 = r^2, \quad dA = r \, dr \, d\theta.

The integral becomes: Ry2x2+y2dA=Rr2sin2θr2rdrdθ=Rsin2θrdrdθ.\iint_R \frac{y^2}{x^2 + y^2} \, dA = \iint_R \frac{r^2 \sin^2\theta}{r^2} r \, dr \, d\theta = \iint_R \sin^2\theta \, r \, dr \, d\theta.


Step 2: Bounds for rr and θ\theta

  • rr ranges from 4 (inner circle r2=16r^2 = 16) to 10 (outer circle r2=100r^2 = 100).
  • θ\theta ranges from 00 to 2π2\pi (full circle).

Thus, the integral becomes: 02π410sin2θrdrdθ.\int_0^{2\pi} \int_4^{10} \sin^2\theta \, r \, dr \, d\theta.


Step 3: Simplify and Separate Integrals

Since sin2θ\sin^2\theta is independent of rr, we can separate the integral: 02π410sin2θrdrdθ=(02πsin2θdθ)(410rdr).\int_0^{2\pi} \int_4^{10} \sin^2\theta \, r \, dr \, d\theta = \left( \int_0^{2\pi} \sin^2\theta \, d\theta \right) \left( \int_4^{10} r \, dr \right).


Step 4: Evaluate Each Part

  1. Evaluate 02πsin2θdθ\int_0^{2\pi} \sin^2\theta \, d\theta:

Use the identity sin2θ=1cos(2θ)2\sin^2\theta = \frac{1 - \cos(2\theta)}{2}: 02πsin2θdθ=02π1cos(2θ)2dθ=1202π1dθ1202πcos(2θ)dθ.\int_0^{2\pi} \sin^2\theta \, d\theta = \int_0^{2\pi} \frac{1 - \cos(2\theta)}{2} \, d\theta = \frac{1}{2} \int_0^{2\pi} 1 \, d\theta - \frac{1}{2} \int_0^{2\pi} \cos(2\theta) \, d\theta.

  • 02π1dθ=2π\int_0^{2\pi} 1 \, d\theta = 2\pi,
  • 02πcos(2θ)dθ=0\int_0^{2\pi} \cos(2\theta) \, d\theta = 0 (since cos(2θ)\cos(2\theta) is periodic over [0,2π][0, 2\pi]).

Thus: 02πsin2θdθ=12(2π)=π.\int_0^{2\pi} \sin^2\theta \, d\theta = \frac{1}{2} (2\pi) = \pi.

  1. Evaluate 410rdr\int_4^{10} r \, dr: 410rdr=[r22]410=1022422=1002162=508=42.\int_4^{10} r \, dr = \left[ \frac{r^2}{2} \right]_4^{10} = \frac{10^2}{2} - \frac{4^2}{2} = \frac{100}{2} - \frac{16}{2} = 50 - 8 = 42.

Step 5: Combine Results

Ry2x2+y2dA=(02πsin2θdθ)(410rdr)=π42=42π.\iint_R \frac{y^2}{x^2 + y^2} \, dA = \left( \int_0^{2\pi} \sin^2\theta \, d\theta \right) \left( \int_4^{10} r \, dr \right) = \pi \cdot 42 = 42\pi.


Final Answer:

42π\boxed{42\pi}


Would you like further clarification or additional examples?

Related Questions:

  1. How do you convert a general Cartesian integral into polar coordinates?
  2. What is the geometric interpretation of changing regions of integration to polar coordinates?
  3. Can you explain why cos(2θ)\cos(2\theta) integrates to zero over a full period?
  4. How do you find the limits for rr and θ\theta in polar coordinates?
  5. Why is dA=rdrdθdA = r \, dr \, d\theta in polar coordinates?

Tip:

Always simplify trigonometric terms using identities like sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1 or sin2θ=1cos(2θ)2\sin^2\theta = \frac{1 - \cos(2\theta)}{2} when integrating over full circular intervals!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Polar Coordinates
Trigonometric Identities
Area Integrals

Formulas

x = r \cos\theta
y = r \sin\theta
x^2 + y^2 = r^2
dA = r \, dr \, d\theta
sin^2\theta = \frac{1 - \cos(2\theta)}{2}
\int_a^b f(x) \ dx

Theorems

Change of Variables Theorem (Polar Coordinates)
Trigonometric Identity for sin^2\theta

Suitable Grade Level

Undergraduate (Calculus I or II)