Math Problem Statement

Tentukan domain (𝐷𝑓) dan range (𝑅𝑓) dari fungsi-fungsi dibawah ini? y = 10 βˆ’ x2

Solution

Fungsi yang diberikan adalah:

y=10βˆ’x2y = 10 - x^2

1. Domain (𝐷𝑓):

Domain dari suatu fungsi adalah himpunan nilai xx yang dapat digunakan dalam fungsi tersebut.

Pada fungsi ini, tidak ada pembatasan untuk nilai xx karena tidak ada akar kuadrat atau pembagian yang bisa menyebabkan nilai tak terdefinisi. Dengan demikian, domainnya adalah semua bilangan real.

𝐷𝑓=(βˆ’βˆž,∞)𝐷𝑓 = (-\infty, \infty)

2. Range (𝑅𝑓):

Range adalah himpunan nilai yy yang mungkin dihasilkan oleh fungsi tersebut.

Karena y=10βˆ’x2y = 10 - x^2, kita dapat melihat bahwa:

  • x2x^2 adalah kuadrat dari suatu bilangan, sehingga nilainya selalu non-negatif, yaitu x2β‰₯0x^2 \geq 0.
  • Dengan demikian, 10βˆ’x2≀1010 - x^2 \leq 10.
  • Nilai minimum dari yy terjadi ketika x2x^2 mencapai nilai maksimum (yaitu x2=0x^2 = 0 saat x=0x = 0).

Maka, nilai yy berada pada interval:

π‘¦βˆˆ(βˆ’βˆž,10]𝑦 \in (-\infty, 10]

Jadi, range (𝑅𝑓) dari fungsi ini adalah:

𝑅𝑓=(βˆ’βˆž,10]𝑅𝑓 = (-\infty, 10]

Kesimpulan:

  • Domain (𝐷𝑓): (βˆ’βˆž,∞)(-\infty, \infty)
  • Range (𝑅𝑓): (βˆ’βˆž,10](-\infty, 10]

Apakah Anda ingin penjelasan lebih rinci atau ada pertanyaan terkait?

Pertanyaan terkait:

  1. Apa yang dimaksud dengan domain pada fungsi kuadrat?
  2. Mengapa fungsi kuadrat selalu memiliki domain seluruh bilangan real?
  3. Bagaimana cara menentukan range fungsi kuadrat tanpa menggambar grafiknya?
  4. Bagaimana jika fungsi memiliki akar kuadrat, bagaimana cara menentukan domainnya?
  5. Apa perbedaan antara domain dan range pada fungsi trigonometri?

Tip: Untuk menemukan range, perhatikan nilai minimum atau maksimum dari ekspresi di dalam fungsi dan batasan aljabar pada variabel yang terkait.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Functions
Domain and Range

Formulas

y = 10 - x^2

Theorems

Range of quadratic functions
Properties of parabolas

Suitable Grade Level

Grades 9-10