Math Problem Statement

The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A' B (where B is the point (2, 3)) subtend angle π/4 at the origin, is equal to

Solution

To solve this, let us analyze the geometry of the problem step by step:


1. Points on the line y=2y = 2

Any point on the line y=2y = 2 can be represented as: A(x,2)andA(x,2)A(x, 2) \quad \text{and} \quad A'(x', 2)


2. Conditions for subtending π4\frac{\pi}{4} at the origin

The line segments ABAB and ABA'B, where B(2,3)B(2, 3), subtend an angle of π4\frac{\pi}{4} at the origin. This means the angle between the position vectors OA\overrightarrow{OA} and OB\overrightarrow{OB}, as well as OA\overrightarrow{OA'} and OB\overrightarrow{OB}, is π4\frac{\pi}{4}.

Using the dot product formula, for OA\overrightarrow{OA} and OB\overrightarrow{OB}: cosθ=OAOBOAOB,where θ=π4.\cos \theta = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA}| |\overrightarrow{OB}|}, \quad \text{where } \theta = \frac{\pi}{4}. Thus: cosπ4=22    OAOB=OAOB2.\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \implies \overrightarrow{OA} \cdot \overrightarrow{OB} = \frac{|\overrightarrow{OA}| |\overrightarrow{OB}|}{\sqrt{2}}.

Let A(x,2)A(x, 2). Then: OA=(x,2),OB=(2,3).\overrightarrow{OA} = (x, 2), \quad \overrightarrow{OB} = (2, 3).


3. Dot Product Condition

Using OAOB=OAOB2\overrightarrow{OA} \cdot \overrightarrow{OB} = \frac{|\overrightarrow{OA}| |\overrightarrow{OB}|}{\sqrt{2}}: x2+23=x2+2222+322.x \cdot 2 + 2 \cdot 3 = \frac{\sqrt{x^2 + 2^2} \cdot \sqrt{2^2 + 3^2}}{\sqrt{2}}.

Simplify: 2x+6=x2+4132.2x + 6 = \frac{\sqrt{x^2 + 4} \cdot \sqrt{13}}{\sqrt{2}}.

Squaring both sides: (2x+6)2=13(x2+4)2.(2x + 6)^2 = \frac{13(x^2 + 4)}{2}.

Expanding: 4x2+24x+36=13x2+522.4x^2 + 24x + 36 = \frac{13x^2 + 52}{2}.

Multiply through by 2: 8x2+48x+72=13x2+52.8x^2 + 48x + 72 = 13x^2 + 52.

Rearrange: 0=5x248x20.0 = 5x^2 - 48x - 20.


4. Solving the Quadratic Equation

The quadratic equation is: 5x248x20=0.5x^2 - 48x - 20 = 0.

Using the quadratic formula: x=b±b24ac2a,x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=5a = 5, b=48b = -48, and c=20c = -20: x=(48)±(48)24(5)(20)2(5).x = \frac{-(-48) \pm \sqrt{(-48)^2 - 4(5)(-20)}}{2(5)}.

Simplify: x=48±2304+40010.x = \frac{48 \pm \sqrt{2304 + 400}}{10}. x=48±270410.x = \frac{48 \pm \sqrt{2704}}{10}. x=48±5210.x = \frac{48 \pm 52}{10}.

Thus: x=48+5210=10,x=485210=0.4.x = \frac{48 + 52}{10} = 10, \quad x = \frac{48 - 52}{10} = -0.4.


5. Distance Between AA and AA'

The points AA and AA' are: A(10,2),A(0.4,2).A(10, 2), \quad A'(-0.4, 2).

The distance between them is: Distance=(10(0.4))2+(22)2.\text{Distance} = \sqrt{(10 - (-0.4))^2 + (2 - 2)^2}. Distance=(10.4)2.\text{Distance} = \sqrt{(10.4)^2}. Distance=10.4.\text{Distance} = 10.4.


Final Answer:

The distance between AA and AA' is: 10.4.\boxed{10.4}.

Would you like a detailed explanation of any specific step?


5 Related Questions:

  1. What is the geometric interpretation of subtending an angle at a point?
  2. How does the dot product help in finding angles between vectors?
  3. Can we solve this problem using a coordinate transformation?
  4. How is the quadratic formula derived?
  5. What are some practical applications of subtended angles in geometry?

Tip:

When working with subtended angles, always carefully verify the geometry of the problem to avoid missing constraints.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Vectors
Angles
Quadratic Equations

Formulas

Dot product: cos θ = (u • v) / (|u||v|)
Distance formula: d = √((x2 - x1)^2 + (y2 - y1)^2)
Quadratic equation: x = (-b ± √(b^2 - 4ac)) / 2a

Theorems

Pythagorean Theorem
Quadratic Formula

Suitable Grade Level

Grades 10-12