Math Problem Statement

The velocity function (in meters per second) is given for a particle moving along a line. v(t) = 3t − 8, 0 ≤ t ≤ 4 (a) Find the displacement (in meters). -8

Correct: Your answer is correct. m (b) Find the total distance traveled (in meters) by the particle during the given time interval.

Incorrect: Your answer is incorrect. m

Solution

Let’s solve the problem step by step to find the displacement and total distance traveled.

(a) Displacement

Displacement is calculated using the definite integral of the velocity function v(t)v(t) over the given time interval [0,4][0, 4].

Displacement=04v(t)dt=04(3t8)dt\text{Displacement} = \int_{0}^{4} v(t) \, dt = \int_{0}^{4} (3t - 8) \, dt

  1. Compute the integral: (3t8)dt=3t228t+C\int (3t - 8) \, dt = \frac{3t^2}{2} - 8t + C

  2. Apply the limits of integration: [ \text{Displacement} = \left[ \frac{3(4)^2}{2} - 8(4) \right] - \left[ \frac{3(0)^2}{2} - 8(0) \right] ] [ \text{Displacement} = \left[ \frac{48}{2} - 32 \right] - \left[ 0 \right] = 24 - 32 = -8 , \text{m}. ]

This confirms your correct answer of 8m-8 \, \text{m} for displacement.


(b) Total Distance Traveled

Total distance differs from displacement because it considers the absolute value of the velocity v(t)|v(t)|.

  1. Identify when the velocity changes sign, since the particle may reverse direction: v(t)=3t8set v(t)=0v(t) = 3t - 8 \quad \text{set } v(t) = 0 3t8=0    t=83seconds.3t - 8 = 0 \implies t = \frac{8}{3} \, \text{seconds}.

    So, the particle changes direction at t=83t = \frac{8}{3}. We’ll split the integral into two parts: [0,83][0, \frac{8}{3}] and [83,4][\frac{8}{3}, 4].

  2. Compute the total distance: Total Distance=083v(t)dt+834v(t)dt\text{Total Distance} = \int_{0}^{\frac{8}{3}} |v(t)| \, dt + \int_{\frac{8}{3}}^{4} |v(t)| \, dt

For 0t830 \leq t \leq \frac{8}{3}, v(t)<0v(t) < 0, so v(t)=(3t8)=3t+8|v(t)| = -(3t - 8) = -3t + 8.

For 83t4\frac{8}{3} \leq t \leq 4, v(t)>0v(t) > 0, so v(t)=3t8|v(t)| = 3t - 8.


Step 1: Compute the first integral 083(3t+8)dt=[3t22+8t]083\int_{0}^{\frac{8}{3}} (-3t + 8) \, dt = \left[ -\frac{3t^2}{2} + 8t \right]_{0}^{\frac{8}{3}} [ = \left[ -\frac{3\left(\frac{8}{3}\right)^2}{2} + 8\left(\frac{8}{3}\right) \right] - \left[ 0 \right] ] =[36492+643]= \left[ -\frac{3 \cdot \frac{64}{9}}{2} + \frac{64}{3} \right] =[19218+38418]=19218=323m.= \left[ -\frac{192}{18} + \frac{384}{18} \right] = \frac{192}{18} = \frac{32}{3} \, \text{m}.


Step 2: Compute the second integral 834(3t8)dt=[3t228t]834\int_{\frac{8}{3}}^{4} (3t - 8) \, dt = \left[ \frac{3t^2}{2} - 8t \right]_{\frac{8}{3}}^{4} [ = \left[ \frac{3(4)^2}{2} - 8(4) \right] - \left[ \frac{3\left(\frac{8}{3}\right)^2}{2} - 8\left(\frac{8}{3}\right) \right] ] [ = \left[ 24 - 32 \right] - \left[ -\frac{192}{18} + \frac{384}{18} \right] ] =819218=323m.= -8 - \frac{192}{18} = \frac{32}{3} \, \text{m}.


Step 3: Total Distance Total Distance=323+323=64321.33m.\text{Total Distance} = \frac{32}{3} + \frac{32}{3} = \frac{64}{3} \approx 21.33 \, \text{m}.


Final Answers:

(a) Displacement: 8m-8 \, \text{m}
(b) Total Distance Traveled: 643m21.33m\frac{64}{3} \, \text{m} \approx 21.33 \, \text{m}


Would you like more details on the calculations or further assistance?
Here are 5 related questions to expand your understanding:

  1. How is displacement different from distance traveled in motion problems?
  2. What does the velocity sign change signify about the particle's motion?
  3. How can you graph velocity to visually interpret displacement and distance?
  4. What is the significance of using absolute value in total distance calculations?
  5. Can total distance ever equal displacement? If so, under what conditions?

Tip: When solving for total distance, always split integrals at points where the velocity changes sign!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integration
Velocity and Motion Analysis

Formulas

Displacement = ∫ v(t) dt over the given interval
Total Distance Traveled = ∫ |v(t)| dt over the given interval

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 or introductory college-level calculus