Math Problem Statement

The velocity function (in meters per second) is given for a particle moving along a line.

v(t) = 3t − 7,    0 ≤ t ≤ 3

(a)

Find the displacement (in meters).

 m

(b)

Find the total distance traveled (in meters) by the particle during the given time interval.

 m

Solution

To solve this, we need to use integrals to find the displacement and total distance traveled.


(a) Finding the Displacement

Displacement is calculated by integrating the velocity function v(t)v(t) over the given time interval:

Displacement=03v(t)dt=03(3t7)dt\text{Displacement} = \int_{0}^{3} v(t) \, dt = \int_{0}^{3} (3t - 7) \, dt

  1. Integrate v(t)=3t7v(t) = 3t - 7:

(3t7)dt=3t227t+C\int (3t - 7) \, dt = \frac{3t^2}{2} - 7t + C

  1. Evaluate the definite integral from t=0t = 0 to t=3t = 3:

[ \left[ \frac{3(3)^2}{2} - 7(3) \right] - \left[ \frac{3(0)^2}{2} - 7(0) \right] ]

[ = \left[ \frac{27}{2} - 21 \right] - \left[ 0 \right] ]

=272422=152=7.5meters.= \frac{27}{2} - \frac{42}{2} = -\frac{15}{2} = -7.5 \, \text{meters}.

Displacement = -7.5 meters.


(b) Finding the Total Distance Traveled

The total distance traveled is the integral of the absolute value of the velocity function:

Total Distance=03v(t)dt.\text{Total Distance} = \int_{0}^{3} |v(t)| \, dt.

First, identify when v(t)v(t) changes sign by solving v(t)=0v(t) = 0:

3t7=0    t=73.3t - 7 = 0 \implies t = \frac{7}{3}.

So, split the integral at t=73t = \frac{7}{3} because the velocity changes from negative to positive:

Total Distance=073v(t)dt+733v(t)dt.\text{Total Distance} = \int_{0}^{\frac{7}{3}} |v(t)| \, dt + \int_{\frac{7}{3}}^{3} |v(t)| \, dt.

  1. From t=0t = 0 to t=73t = \frac{7}{3}: v(t)<0v(t) < 0, so v(t)=(v(t))=(3t7)=3t+7|v(t)| = -(v(t)) = -(3t - 7) = -3t + 7.

073(3t+7)dt=[3t22+7t]073.\int_{0}^{\frac{7}{3}} (-3t + 7) \, dt = \left[ -\frac{3t^2}{2} + 7t \right]_{0}^{\frac{7}{3}}.

[ = \left[ -\frac{3(\frac{7}{3})^2}{2} + 7(\frac{7}{3}) \right] - \left[ 0 \right] ]

=[3(499)2+493]= \left[ -\frac{3(\frac{49}{9})}{2} + \frac{49}{3} \right]

=[496+986]=496.= \left[ -\frac{49}{6} + \frac{98}{6} \right] = \frac{49}{6}.

  1. From t=73t = \frac{7}{3} to t=3t = 3: v(t)>0v(t) > 0, so v(t)=v(t)=3t7|v(t)| = v(t) = 3t - 7.

733(3t7)dt=[3t227t]733.\int_{\frac{7}{3}}^{3} (3t - 7) \, dt = \left[ \frac{3t^2}{2} - 7t \right]_{\frac{7}{3}}^{3}.

[ = \left[ \frac{3(3)^2}{2} - 7(3) \right] - \left[ \frac{3(\frac{7}{3})^2}{2} - 7(\frac{7}{3}) \right] ]

[ = \left[ \frac{27}{2} - 21 \right] - \left[ \frac{49}{6} - \frac{49}{3} \right]. ]

Simplify each term:

27221=152,496986=496.\frac{27}{2} - 21 = -\frac{15}{2}, \quad \frac{49}{6} - \frac{98}{6} = -\frac{49}{6}.

152(496)=456+496=46=23.-\frac{15}{2} - \left( -\frac{49}{6} \right) = -\frac{45}{6} + \frac{49}{6} = \frac{4}{6} = \frac{2}{3}.

Total Distance Traveled = 496+23=516=8.5meters\frac{49}{6} + \frac{2}{3} = \frac{51}{6} = 8.5 \, \text{meters}.


Final Answers:

(a) Displacement = 7.5meters-7.5 \, \text{meters}
(b) Total Distance Traveled = 8.5meters8.5 \, \text{meters}

Would you like further explanation or a breakdown of any step?


Related Questions:

  1. How does the velocity function affect displacement vs. distance traveled?
  2. What does a negative displacement indicate about motion?
  3. Can the total distance ever be less than displacement?
  4. How do you find when the particle changes direction using velocity?
  5. Why is the integral of the absolute value used for total distance?

Tip: When dealing with motion problems, always check for sign changes in velocity to separate the motion into distinct intervals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Displacement and Distance

Formulas

Displacement = ∫ v(t) dt over the given interval
Total Distance = ∫ |v(t)| dt over the given interval

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 or introductory college level