Math Problem Statement

y=secxcosec3x dy/dx

Solution

To find the derivative of the function y=sec(x)csc(3x)y = \sec(x) \csc(3x), we will use the product rule. The product rule states that if y=u(x)v(x)y = u(x) \cdot v(x), then:

dydx=u(x)v(x)+u(x)v(x)\frac{dy}{dx} = u'(x) v(x) + u(x) v'(x)

Here, let: u(x)=sec(x),v(x)=csc(3x)u(x) = \sec(x), \quad v(x) = \csc(3x)

Step 1: Find the derivatives of u(x)u(x) and v(x)v(x)

  1. Derivative of u(x)=sec(x)u(x) = \sec(x):

u(x)=ddx(sec(x))=sec(x)tan(x)u'(x) = \frac{d}{dx} (\sec(x)) = \sec(x) \tan(x)

  1. Derivative of v(x)=csc(3x)v(x) = \csc(3x):

v(x)=ddx(csc(3x))v'(x) = \frac{d}{dx} (\csc(3x))

To differentiate csc(3x)\csc(3x), we use the chain rule:

v(x)=csc(3x)cot(3x)ddx(3x)=3csc(3x)cot(3x)v'(x) = -\csc(3x) \cot(3x) \cdot \frac{d}{dx} (3x) = -3 \csc(3x) \cot(3x)

Step 2: Apply the product rule

Now, applying the product rule:

dydx=u(x)v(x)+u(x)v(x)\frac{dy}{dx} = u'(x) v(x) + u(x) v'(x)

Substitute the values of u(x),u(x),v(x),u(x), u'(x), v(x), and v(x)v'(x):

dydx=(sec(x)tan(x))(csc(3x))+(sec(x))(3csc(3x)cot(3x))\frac{dy}{dx} = (\sec(x) \tan(x)) \cdot (\csc(3x)) + (\sec(x)) \cdot (-3 \csc(3x) \cot(3x))

Simplify the expression:

dydx=sec(x)tan(x)csc(3x)3sec(x)csc(3x)cot(3x)\frac{dy}{dx} = \sec(x) \tan(x) \csc(3x) - 3 \sec(x) \csc(3x) \cot(3x)

Step 3: Factor the common terms

You can factor out sec(x)csc(3x)\sec(x) \csc(3x):

dydx=sec(x)csc(3x)(tan(x)3cot(3x))\frac{dy}{dx} = \sec(x) \csc(3x) \left( \tan(x) - 3 \cot(3x) \right)

Final Answer

dydx=sec(x)csc(3x)(tan(x)3cot(3x))\frac{dy}{dx} = \sec(x) \csc(3x) \left( \tan(x) - 3 \cot(3x) \right)

Would you like more details or have any questions?

5 Related Questions

  1. How do you differentiate other trigonometric functions like sin(x)\sin(x) and cos(x)\cos(x)?
  2. What is the chain rule and how does it apply to trigonometric functions?
  3. How do you find the derivative of the product of more than two functions?
  4. How do you handle the differentiation of trigonometric functions involving composite angles, like sin(2x)\sin(2x) or cos(3x)\cos(3x)?
  5. What is the significance of trigonometric derivatives in real-world applications?

Tip

Remember that understanding the differentiation rules for trigonometric functions can help simplify many complex calculus problems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Product Rule
Trigonometric Functions
Chain Rule

Formulas

Product rule: dy/dx = u'(x)v(x) + u(x)v'(x)
Derivative of sec(x): d/dx(sec(x)) = sec(x)tan(x)
Derivative of csc(3x): d/dx(csc(3x)) = -3csc(3x)cot(3x)

Theorems

Product Rule
Chain Rule

Suitable Grade Level

Undergraduate Calculus