Math Problem Statement

solve 10 and 9

Solve problems 10 and 9 from the list.

Solution

Let's solve problems 9 and 10 step by step.

Problem 9:

ddx(4x2lnx)\frac{d}{dx} \left( \frac{4x^2}{\ln x} \right) This is a quotient rule problem. The quotient rule states: ddx(f(x)g(x))=f(x)g(x)f(x)g(x)(g(x))2\frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} where:

  • f(x)=4x2f(x) = 4x^2
  • g(x)=lnxg(x) = \ln x

Step 1: Differentiate f(x)=4x2f(x) = 4x^2 f(x)=8xf'(x) = 8x

Step 2: Differentiate g(x)=lnxg(x) = \ln x g(x)=1xg'(x) = \frac{1}{x}

Step 3: Apply quotient rule (8xlnx)(4x21x)(lnx)2\frac{(8x \cdot \ln x) - (4x^2 \cdot \frac{1}{x})}{(\ln x)^2} =8xlnx4x(lnx)2= \frac{8x \ln x - 4x}{(\ln x)^2}

Final Answer:
8xlnx4x(lnx)2\frac{8x \ln x - 4x}{(\ln x)^2}


Problem 10:

ddx(3sinxtanx)\frac{d}{dx} \left( \frac{3 \sin x}{\tan x} \right) This also follows the quotient rule, where:

  • f(x)=3sinxf(x) = 3\sin x
  • g(x)=tanxg(x) = \tan x

Step 1: Differentiate f(x)=3sinxf(x) = 3\sin x f(x)=3cosxf'(x) = 3\cos x

Step 2: Differentiate g(x)=tanxg(x) = \tan x g(x)=sec2xg'(x) = \sec^2 x

Step 3: Apply quotient rule (3cosxtanx)(3sinxsec2x)(tanx)2\frac{(3\cos x \cdot \tan x) - (3\sin x \cdot \sec^2 x)}{(\tan x)^2}

Final Answer:
3cosxtanx3sinxsec2xtan2x\frac{3\cos x \tan x - 3\sin x \sec^2 x}{\tan^2 x}


Would you like more explanation on any step?

Here are 5 related problems you can try:

  1. ddx(x2ex)\frac{d}{dx} \left( \frac{x^2}{e^x} \right)
  2. ddx(x3lnx)\frac{d}{dx} \left( \frac{x^3}{\ln x} \right)
  3. ddx(exx)\frac{d}{dx} \left( \frac{e^x}{x} \right)
  4. ddx(xx)\frac{d}{dx} \left( x^x \right)
  5. ddx(sinxx2)\frac{d}{dx} \left( \frac{\sin x}{x^2} \right)

Tip:
For derivatives of fractions, always check if the quotient rule is required or if simplification can be done first.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Quotient Rule
Trigonometric Derivatives

Formulas

Quotient Rule: d/dx (f(x)/g(x)) = (f'(x)g(x) - f(x)g'(x)) / (g(x))^2
Derivative of ln(x): d/dx (ln(x)) = 1/x
Derivative of tan(x): d/dx (tan(x)) = sec^2(x)

Theorems

Quotient Rule

Suitable Grade Level

Grades 11-12