Math Problem Statement

Solve

Solution

Let's solve the derivatives for each of the given functions step by step.

1. Function 1: y=(tnz2+6x)2y = (tnz^2 + 6x)^2

  • Derivative: Let u=tnz2+6x.\text{Let } u = tnz^2 + 6x. y=u2y = u^2 The derivative of yy with respect to xx is: dydx=2ududx\frac{dy}{dx} = 2u \cdot \frac{du}{dx} Now, differentiate uu with respect to xx: dudx=2tnzdzdx+6\frac{du}{dx} = 2tnz \cdot \frac{dz}{dx} + 6 Substituting back: dydx=2(tnz2+6x)(2tnzdzdx+6)\frac{dy}{dx} = 2(tnz^2 + 6x) \cdot (2tnz \cdot \frac{dz}{dx} + 6)

2. Function 2: y=2x2x+5y = 2x^{2x+5}

  • Derivative: We use logarithmic differentiation: lny=ln(2x2x+5)=ln2+(2x+5)lnx\ln y = \ln(2x^{2x+5}) = \ln 2 + (2x + 5) \ln x Differentiating both sides with respect to xx: 1ydydx=0+(2lnx+2x+5x)\frac{1}{y} \cdot \frac{dy}{dx} = 0 + \left( 2 \cdot \ln x + \frac{2x + 5}{x} \right) So, dydx=y(2lnx+2x+5x)\frac{dy}{dx} = y \cdot \left( 2 \ln x + \frac{2x + 5}{x} \right) Substitute back y=2x2x+5y = 2x^{2x+5}: dydx=2x2x+5(2lnx+2x+5x)\frac{dy}{dx} = 2x^{2x+5} \cdot \left( 2 \ln x + \frac{2x + 5}{x} \right)

3. Function 3: y=4x2+2x6y = \frac{4x^2 + 2}{x^6}

  • Derivative: Simplify first: y=4x2x6+2x6=4x4+2x6y = \frac{4x^2}{x^6} + \frac{2}{x^6} = 4x^{-4} + 2x^{-6} Differentiate term by term: dydx=16x512x7=16x512x7\frac{dy}{dx} = -16x^{-5} - 12x^{-7} = -\frac{16}{x^5} - \frac{12}{x^7}

4. Function 4: y=(5x+7)(3x2+5)y = (5x + 7)(3x^2 + 5)

  • Derivative: Use the product rule: [ \frac{dy}{dx} = \frac{d}{dx}[5x + 7] \cdot (3x^2 + 5) + (5x + 7) \cdot \frac{d}{dx}[3x^2 + 5] ] Differentiate each: dydx=5(3x2+5)+(5x+7)(6x)\frac{dy}{dx} = 5(3x^2 + 5) + (5x + 7)(6x) Simplify: dydx=15x2+25+30x2+42x=45x2+42x+25\frac{dy}{dx} = 15x^2 + 25 + 30x^2 + 42x = 45x^2 + 42x + 25

Questions:

  1. How do you apply the product rule in differentiation?
  2. What is logarithmic differentiation and when is it useful?
  3. Why is it important to simplify functions before differentiating?
  4. How does the chain rule work in composite functions?
  5. What are some common mistakes to avoid when differentiating complex functions?

Tip: Always check if simplifying a function first makes the differentiation process easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Product Rule
Logarithmic Differentiation
Chain Rule

Formulas

Product rule formula
Logarithmic differentiation formula
Chain rule formula

Theorems

-

Suitable Grade Level

Advanced High School to College