Math Problem Statement

Solve the math

Solve the math

Solution

To solve the given differentiation problems in Examples 1-5, we will use the quotient rule for derivatives.

The quotient rule states:

ddx(u(x)v(x))=u(x)v(x)u(x)v(x)v(x)2,\frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}, where u(x)u(x) is the numerator and v(x)v(x) is the denominator.


Solution for Example 1

Differentiate:

ddx(x2+3xx32x).\frac{d}{dx} \left( \frac{x^2 + 3x}{x^3 - 2x} \right).

  • u(x)=x2+3xu(x) = x^2 + 3x, so u(x)=2x+3u'(x) = 2x + 3.
  • v(x)=x32xv(x) = x^3 - 2x, so v(x)=3x22v'(x) = 3x^2 - 2.

Using the quotient rule:

ddx(x2+3xx32x)=(2x+3)(x32x)(x2+3x)(3x22)(x32x)2.\frac{d}{dx} \left( \frac{x^2 + 3x}{x^3 - 2x} \right) = \frac{(2x + 3)(x^3 - 2x) - (x^2 + 3x)(3x^2 - 2)}{(x^3 - 2x)^2}.

Simplify the numerator:

  1. Expand (2x+3)(x32x)(2x + 3)(x^3 - 2x): (2x+3)(x32x)=2x44x2+3x36x.(2x + 3)(x^3 - 2x) = 2x^4 - 4x^2 + 3x^3 - 6x.

  2. Expand (x2+3x)(3x22)(x^2 + 3x)(3x^2 - 2): (x2+3x)(3x22)=3x42x2+9x36x.(x^2 + 3x)(3x^2 - 2) = 3x^4 - 2x^2 + 9x^3 - 6x.

Now subtract the two results:

Numerator=(2x44x2+3x36x)(3x42x2+9x36x).\text{Numerator} = \left( 2x^4 - 4x^2 + 3x^3 - 6x \right) - \left( 3x^4 - 2x^2 + 9x^3 - 6x \right).

Combine like terms:

[ \text{Numerator} = 2x^4 - 3x^4 - 4x^2 + 2x^2 + 3x^3 - 9x^3 - 6x + 6x

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Quotient Rule

Formulas

Quotient Rule: d/dx [u(x)/v(x)] = (u'(x)v(x) - u(x)v'(x)) / v(x)^2

Theorems

Quotient Rule

Suitable Grade Level

Grades 11-12