Math Problem Statement

Given that y= sinx / e^x find dy/dx then find d^2y / d^2x then find d^3y / d^3x then find d^4y / d^4x

Solution

Given y=sin(x)exy = \frac{\sin(x)}{e^x}, we need to find the first, second, third, and fourth derivatives of yy with respect to xx.

Step 1: Find the first derivative dydx\frac{dy}{dx}

We will use the quotient rule for differentiation, which states: dydx=f(x)g(x)f(x)g(x)[g(x)]2\frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} where f(x)=sin(x)f(x) = \sin(x) and g(x)=exg(x) = e^x.

  1. f(x)=cos(x)f'(x) = \cos(x)
  2. g(x)=exg'(x) = e^x

Now, apply the quotient rule: dydx=cos(x)exsin(x)ex(ex)2\frac{dy}{dx} = \frac{\cos(x) \cdot e^x - \sin(x) \cdot e^x}{(e^x)^2} Simplify the expression: dydx=ex(cos(x)sin(x))e2x=cos(x)sin(x)ex\frac{dy}{dx} = \frac{e^x(\cos(x) - \sin(x))}{e^{2x}} = \frac{\cos(x) - \sin(x)}{e^x}

Step 2: Find the second derivative d2ydx2\frac{d^2y}{dx^2}

Now, differentiate dydx=cos(x)sin(x)ex\frac{dy}{dx} = \frac{\cos(x) - \sin(x)}{e^x} using the quotient rule again.

Let u(x)=cos(x)sin(x)u(x) = \cos(x) - \sin(x) and v(x)=exv(x) = e^x.

  1. u(x)=sin(x)cos(x)u'(x) = -\sin(x) - \cos(x)
  2. v(x)=exv'(x) = e^x

Using the quotient rule: d2ydx2=u(x)v(x)u(x)v(x)[v(x)]2\frac{d^2y}{dx^2} = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} Substituting in the values: d2ydx2=(sin(x)cos(x))ex(cos(x)sin(x))exe2x\frac{d^2y}{dx^2} = \frac{(-\sin(x) - \cos(x)) \cdot e^x - (\cos(x) - \sin(x)) \cdot e^x}{e^{2x}} Simplify the expression: d2ydx2=ex(sin(x)cos(x)cos(x)+sin(x))e2x=2cos(x)ex\frac{d^2y}{dx^2} = \frac{e^x(-\sin(x) - \cos(x) - \cos(x) + \sin(x))}{e^{2x}} = \frac{-2\cos(x)}{e^x}

Step 3: Find the third derivative d3ydx3\frac{d^3y}{dx^3}

Differentiate d2ydx2=2cos(x)ex\frac{d^2y}{dx^2} = \frac{-2\cos(x)}{e^x}.

Using the quotient rule again, let u(x)=2cos(x)u(x) = -2\cos(x) and v(x)=exv(x) = e^x.

  1. u(x)=2sin(x)u'(x) = 2\sin(x)
  2. v(x)=exv'(x) = e^x

d3ydx3=2sin(x)ex(2cos(x))exe2x\frac{d^3y}{dx^3} = \frac{2\sin(x) \cdot e^x - (-2\cos(x)) \cdot e^x}{e^{2x}} Simplify the expression: d3ydx3=ex(2sin(x)+2cos(x))e2x=2(sin(x)+cos(x))ex\frac{d^3y}{dx^3} = \frac{e^x(2\sin(x) + 2\cos(x))}{e^{2x}} = \frac{2(\sin(x) + \cos(x))}{e^x}

Step 4: Find the fourth derivative d4ydx4\frac{d^4y}{dx^4}

Differentiate d3ydx3=2(sin(x)+cos(x))ex\frac{d^3y}{dx^3} = \frac{2(\sin(x) + \cos(x))}{e^x}.

Using the quotient rule again, let u(x)=2(sin(x)+cos(x))u(x) = 2(\sin(x) + \cos(x)) and v(x)=exv(x) = e^x.

  1. u(x)=2(cos(x)sin(x))u'(x) = 2(\cos(x) - \sin(x))
  2. v(x)=exv'(x) = e^x

d4ydx4=2(cos(x)sin(x))ex2(sin(x)+cos(x))exe2x\frac{d^4y}{dx^4} = \frac{2(\cos(x) - \sin(x)) \cdot e^x - 2(\sin(x) + \cos(x)) \cdot e^x}{e^{2x}} Simplify the expression: d4ydx4=2ex(cos(x)sin(x)sin(x)cos(x))e2x=4sin(x)ex\frac{d^4y}{dx^4} = \frac{2e^x(\cos(x) - \sin(x) - \sin(x) - \cos(x))}{e^{2x}} = \frac{-4\sin(x)}{e^x}

Summary of Derivatives:

  1. dydx=cos(x)sin(x)ex\frac{dy}{dx} = \frac{\cos(x) - \sin(x)}{e^x}
  2. d2ydx2=2cos(x)ex\frac{d^2y}{dx^2} = \frac{-2\cos(x)}{e^x}
  3. d3ydx3=2(sin(x)+cos(x))ex\frac{d^3y}{dx^3} = \frac{2(\sin(x) + \cos(x))}{e^x}
  4. d4ydx4=4sin(x)ex\frac{d^4y}{dx^4} = \frac{-4\sin(x)}{e^x}

Would you like any further explanation or details on any part of the process?


5 Related Questions:

  1. How would the derivatives change if y=cos(x)exy = \frac{\cos(x)}{e^x}?
  2. Can you solve for the nth derivative of y=sin(x)exy = \frac{\sin(x)}{e^x}?
  3. What is the behavior of the function y=sin(x)exy = \frac{\sin(x)}{e^x} as xx approaches infinity?
  4. How do the derivatives of exponential functions generally behave?
  5. What role does the chain rule play in more complex functions?

Tip: Always check if simplifications can be made at each step of differentiation to avoid errors and make the final expression more manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Quotient Rule
Exponential Functions

Formulas

Quotient rule for differentiation

Theorems

-

Suitable Grade Level

College Level