Math Problem Statement

f (x) = (e^−x)* secx/(1 + e^x) find the derrivative

Solution

We are tasked with finding the derivative of the function

f(x)=exsecx1+ex.f(x) = \frac{e^{-x} \sec x}{1 + e^x}.

Let’s proceed step by step:


Step 1: Rewrite the function

The function f(x)f(x) is already in the quotient form:

f(x)=u(x)v(x),f(x) = \frac{u(x)}{v(x)},

where u(x)=exsecx,v(x)=1+ex.u(x) = e^{-x} \sec x, \quad v(x) = 1 + e^x.


Step 2: Apply the Quotient Rule

The derivative of a quotient u(x)v(x)\frac{u(x)}{v(x)} is given by:

f(x)=v(x)u(x)u(x)v(x)(v(x))2.f'(x) = \frac{v(x) u'(x) - u(x) v'(x)}{(v(x))^2}.


Step 3: Compute u(x)u'(x) and v(x)v'(x)

u(x)=exsecxu(x) = e^{-x} \sec x

Using the product rule for derivatives: u(x)=ddx(exsecx)=ddx(ex)secx+exddx(secx).u'(x) = \frac{d}{dx} \left(e^{-x} \sec x \right) = \frac{d}{dx} \left(e^{-x}\right) \sec x + e^{-x} \frac{d}{dx} \left(\sec x\right).

  1. Derivative of exe^{-x}: ddx(ex)=ex.\frac{d}{dx} \left(e^{-x}\right) = -e^{-x}.

  2. Derivative of secx\sec x: ddx(secx)=secxtanx.\frac{d}{dx} \left(\sec x\right) = \sec x \tan x.

So: u(x)=(ex)secx+exsecxtanx=exsecx(tanx1).u'(x) = \left(-e^{-x}\right) \sec x + e^{-x} \sec x \tan x = e^{-x} \sec x (\tan x - 1).

v(x)=1+exv(x) = 1 + e^x

v(x)=ddx(1+ex)=0+ex=ex.v'(x) = \frac{d}{dx} \left(1 + e^x\right) = 0 + e^x = e^x.


Step 4: Substitute into the Quotient Rule

Now substitute u(x)u'(x), u(x)u(x), v(x)v'(x), and v(x)v(x) into the quotient rule:

f(x)=(1+ex)(exsecx(tanx1))(exsecx)(ex)(1+ex)2.f'(x) = \frac{(1 + e^x)\left(e^{-x} \sec x (\tan x - 1)\right) - \left(e^{-x} \sec x\right) \left(e^x\right)}{\left(1 + e^x\right)^2}.


Step 5: Simplify the numerator

Distribute the terms in the numerator:

  1. First term: (1+ex)(exsecx(tanx1))=exsecx(tanx1)+exexsecx(tanx1).(1 + e^x)\left(e^{-x} \sec x (\tan x - 1)\right) = e^{-x} \sec x (\tan x - 1) + e^x \cdot e^{-x} \sec x (\tan x - 1).

Simplify: exsecx(tanx1)+secx(tanx1).e^{-x} \sec x (\tan x - 1) + \sec x (\tan x - 1).

  1. Second term: exsecxex=secx.-e^{-x} \sec x e^x = -\sec x.

Combine the two terms: exsecx(tanx1)+secx(tanx1)secx.e^{-x} \sec x (\tan x - 1) + \sec x (\tan x - 1) - \sec x.


Final Answer:

f(x)=exsecx(tanx1)+secx(tanx2)(1+ex)2.f'(x) = \frac{e^{-x} \sec x (\tan x - 1) + \sec x (\tan x - 2)}{(1 + e^x)^2}.

This is the derivative of f(x)f(x).


Let me know if you'd like further details or a specific part clarified! 😊


Related Questions:

  1. How do you differentiate functions involving exponential and trigonometric terms?
  2. What is the product rule, and when do you use it?
  3. How do you apply the quotient rule step by step for complex functions?
  4. Why is it necessary to simplify after differentiation?
  5. Can you explain the derivative of secx\sec x in more detail?

Tip:

For complicated derivatives, work on the numerator and denominator separately before applying the rules—it keeps calculations cleaner!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivatives
Quotient Rule
Product Rule

Formulas

Quotient Rule: (u/v)' = (v*u' - u*v') / v^2
Product Rule: (uv)' = u'v + uv'
Derivative of e^x: (e^x)' = e^x
Derivative of sec(x): (sec(x))' = sec(x)tan(x)

Theorems

Quotient Rule for Derivatives
Product Rule for Derivatives

Suitable Grade Level

Grades 11-12 / Early College