Math Problem Statement

Determine si la transformación de V en W dada es lineal. Sea T: R^2 -> R^2 definido por T([x, y]^T) = [1, y]^T.

Solution

The question asks whether the given transformation T:R2R2T: \mathbb{R}^2 \to \mathbb{R}^2 defined by T((xy))=(1y)T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 1 \\ y \end{pmatrix} is linear.

To determine if a transformation is linear, it must satisfy two properties:

  1. Additivity: T(u+v)=T(u)+T(v)T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) for any vectors u,vR2\mathbf{u}, \mathbf{v} \in \mathbb{R}^2.
  2. Homogeneity: T(cu)=cT(u)T(c\mathbf{u}) = cT(\mathbf{u}) for any vector uR2\mathbf{u} \in \mathbb{R}^2 and any scalar cc.

Checking Additivity:

Let u=(x1y1)\mathbf{u} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} and v=(x2y2)\mathbf{v} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}.

u+v=(x1y1)+(x2y2)=(x1+x2y1+y2)\mathbf{u} + \mathbf{v} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}

Applying TT to u+v\mathbf{u} + \mathbf{v}:

T(u+v)=T((x1+x2y1+y2))=(1y1+y2)T(\mathbf{u} + \mathbf{v}) = T\left(\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ y_1 + y_2 \end{pmatrix}

Now applying TT separately to u\mathbf{u} and v\mathbf{v}:

T(u)=(1y1),T(v)=(1y2)T(\mathbf{u}) = \begin{pmatrix} 1 \\ y_1 \end{pmatrix}, \quad T(\mathbf{v}) = \begin{pmatrix} 1 \\ y_2 \end{pmatrix}

T(u)+T(v)=(1y1)+(1y2)=(2y1+y2)T(\mathbf{u}) + T(\mathbf{v}) = \begin{pmatrix} 1 \\ y_1 \end{pmatrix} + \begin{pmatrix} 1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 2 \\ y_1 + y_2 \end{pmatrix}

Clearly, T(u+v)T(u)+T(v)T(\mathbf{u} + \mathbf{v}) \neq T(\mathbf{u}) + T(\mathbf{v}). Therefore, the transformation is not additive.

Conclusion:

Since the transformation does not satisfy the additivity property, it is not linear. The correct answer to the question is Falso (False).

Do you want more details or have any questions?

Here are 5 related questions:

  1. What is the general form of a linear transformation?
  2. How can you determine if a matrix represents a linear transformation?
  3. Can a transformation be linear if it only satisfies the homogeneity property?
  4. What are some examples of nonlinear transformations?
  5. How does the concept of linearity apply to higher-dimensional spaces?

Tip: Always verify both the additivity and homogeneity properties when checking for linearity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Linear Transformations

Formulas

Additivity property: T(u + v) = T(u) + T(v)
Homogeneity property: T(c * u) = c * T(u)

Theorems

Theorem on the conditions for linearity of a transformation

Suitable Grade Level

Undergraduate Mathematics