Math Problem Statement

Verify the transformation 𝑇:𝑉2(𝑅)→𝑉2(𝑅) defined by 𝑇(π‘₯,𝑦)= (3π‘₯+2𝑦,3π‘₯βˆ’4𝑦) is linear or not.

Solution

To verify whether the transformation T:R2β†’R2T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 defined by T(x,y)=(3x+2y,3xβˆ’4y)T(x, y) = (3x + 2y, 3x - 4y) is linear, we need to check two properties:

  1. Additivity: T(u+v)=T(u)+T(v)T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})
  2. Homogeneity: T(cu)=cT(u)T(c\mathbf{u}) = cT(\mathbf{u}) for any scalar cc.

Step 1: Check Additivity

Let u=(x1,y1)\mathbf{u} = (x_1, y_1) and v=(x2,y2)\mathbf{v} = (x_2, y_2). Then u+v=(x1+x2,y1+y2)\mathbf{u} + \mathbf{v} = (x_1 + x_2, y_1 + y_2).

Calculate T(u+v)T(\mathbf{u} + \mathbf{v}):

T(u+v)=T(x1+x2,y1+y2)=(3(x1+x2)+2(y1+y2),3(x1+x2)βˆ’4(y1+y2))T(\mathbf{u} + \mathbf{v}) = T(x_1 + x_2, y_1 + y_2) = \left(3(x_1 + x_2) + 2(y_1 + y_2), 3(x_1 + x_2) - 4(y_1 + y_2)\right)

Expanding this:

T(u+v)=(3x1+3x2+2y1+2y2,3x1+3x2βˆ’4y1βˆ’4y2)T(\mathbf{u} + \mathbf{v}) = \left(3x_1 + 3x_2 + 2y_1 + 2y_2, 3x_1 + 3x_2 - 4y_1 - 4y_2\right)

Now calculate T(u)+T(v)T(\mathbf{u}) + T(\mathbf{v}):

T(u)=T(x1,y1)=(3x1+2y1,3x1βˆ’4y1)T(\mathbf{u}) = T(x_1, y_1) = (3x_1 + 2y_1, 3x_1 - 4y_1)

T(v)=T(x2,y2)=(3x2+2y2,3x2βˆ’4y2)T(\mathbf{v}) = T(x_2, y_2) = (3x_2 + 2y_2, 3x_2 - 4y_2)

Adding these:

T(u)+T(v)=(3x1+2y1,3x1βˆ’4y1)+(3x2+2y2,3x2βˆ’4y2)T(\mathbf{u}) + T(\mathbf{v}) = \left(3x_1 + 2y_1, 3x_1 - 4y_1\right) + \left(3x_2 + 2y_2, 3x_2 - 4y_2\right)

T(u)+T(v)=(3x1+3x2+2y1+2y2,3x1+3x2βˆ’4y1βˆ’4y2)T(\mathbf{u}) + T(\mathbf{v}) = \left(3x_1 + 3x_2 + 2y_1 + 2y_2, 3x_1 + 3x_2 - 4y_1 - 4y_2\right)

Since T(u+v)=T(u)+T(v)T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), the additivity property holds.

Step 2: Check Homogeneity

Let cc be a scalar and u=(x,y)\mathbf{u} = (x, y). Then cu=(cx,cy)c\mathbf{u} = (cx, cy).

Calculate T(cu)T(c\mathbf{u}):

T(cu)=T(cx,cy)=(3(cx)+2(cy),3(cx)βˆ’4(cy))T(c\mathbf{u}) = T(cx, cy) = (3(cx) + 2(cy), 3(cx) - 4(cy))

Simplifying:

T(cu)=(c(3x+2y),c(3xβˆ’4y))T(c\mathbf{u}) = (c(3x + 2y), c(3x - 4y))

Now calculate cT(u)cT(\mathbf{u}):

cT(u)=c(3x+2y,3xβˆ’4y)=(c(3x+2y),c(3xβˆ’4y))cT(\mathbf{u}) = c(3x + 2y, 3x - 4y) = (c(3x + 2y), c(3x - 4y))

Since T(cu)=cT(u)T(c\mathbf{u}) = cT(\mathbf{u}), the homogeneity property holds.

Conclusion

Since both additivity and homogeneity are satisfied, the transformation T(x,y)=(3x+2y,3xβˆ’4y)T(x, y) = (3x + 2y, 3x - 4y) is linear.

Would you like to explore further details on this topic?

Related Questions:

  1. What is the matrix representation of the linear transformation T(x,y)=(3x+2y,3xβˆ’4y)T(x, y) = (3x + 2y, 3x - 4y)?
  2. Can you determine if the transformation T(x,y)=(x2,y2)T(x, y) = (x^2, y^2) is linear?
  3. How does the concept of linearity extend to transformations in higher dimensions, like R3\mathbb{R}^3?
  4. What are some common applications of linear transformations in computer graphics?
  5. How do you find the inverse of a linear transformation?

Tip:

In linear algebra, checking the properties of additivity and homogeneity is a fundamental way to determine whether a transformation is linear. Linear transformations preserve vector space structure, which is key in many areas of mathematics and physics.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Transformation
Additivity
Homogeneity
Vector Spaces

Formulas

-

Theorems

-

Suitable Grade Level

Advanced Undergraduate