Math Problem Statement

Find all values of a that make the determinant of the matrix A = [[a, 2], [9-7a, a-46]] equal to 0.

Solution

The task requires finding all values of aa that make the determinant of the given matrix AA equal to zero. The matrix AA is:

A=[a297aa46].A = \begin{bmatrix} a & 2 \\ 9-7a & a-46 \end{bmatrix}.

Determinant Formula for a 2×22 \times 2 Matrix:

For a general 2×22 \times 2 matrix [pqrs],\begin{bmatrix} p & q \\ r & s \end{bmatrix}, the determinant is given by: det(A)=psqr.\text{det}(A) = p \cdot s - q \cdot r.

Applying this Formula:

Here: det(A)=a(a46)2(97a).\text{det}(A) = a \cdot (a - 46) - 2 \cdot (9 - 7a).

Expanding the Determinant:

det(A)=a(a46)2(97a).\text{det}(A) = a(a - 46) - 2(9 - 7a). det(A)=a246a18+14a.\text{det}(A) = a^2 - 46a - 18 + 14a. det(A)=a232a18.\text{det}(A) = a^2 - 32a - 18.

Solve det(A)=0\text{det}(A) = 0:

a232a18=0.a^2 - 32a - 18 = 0.

We will solve this quadratic equation using the quadratic formula: a=b±b24ac2a.a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.

Here:

  • a=1a = 1,
  • b=32b = -32,
  • c=18c = -18.

Substitute into the quadratic formula: a=(32)±(32)24(1)(18)2(1).a = \frac{-(-32) \pm \sqrt{(-32)^2 - 4(1)(-18)}}{2(1)}. a=32±1024+722.a = \frac{32 \pm \sqrt{1024 + 72}}{2}. a=32±10962.a = \frac{32 \pm \sqrt{1096}}{2}. a=32±22742.a = \frac{32 \pm 2\sqrt{274}}{2}. a=16±274.a = 16 \pm \sqrt{274}.

Final Answer:

The values of aa that make det(A)=0\text{det}(A) = 0 are: a=16+274,a=16274.a = 16 + \sqrt{274}, \quad a = 16 - \sqrt{274}.

Would you like a detailed explanation for any part of this solution or assistance in understanding quadratic equations?


5 Related Questions:

  1. How do you compute determinants for higher-order matrices?
  2. What does it mean for a matrix to have a determinant of 0?
  3. Can the quadratic formula be used in all quadratic equations?
  4. How do matrix determinants relate to linear independence?
  5. What applications involve solving matrices with zero determinants?

Tip:

When solving quadratic equations, double-check the discriminant (b24acb^2 - 4ac) to ensure your solution includes all possible real or complex roots.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Determinants
Quadratic Equations

Formulas

Determinant of a 2x2 matrix: det(A) = ad - bc
Quadratic formula: x = (-b ± √(b² - 4ac)) / 2a

Theorems

Quadratic Formula
Properties of Determinants

Suitable Grade Level

Grades 9-12