Math Problem Statement

Tentukan determinan dan adjoin dari matrix berikut

Tentukan determinan dan adjoin dari matrix berikut

Solution

The given matrix AA is:

A=(5476).A = \begin{pmatrix} -5 & 4 \\ -7 & 6 \end{pmatrix}.

1. Determinant of AA

The determinant of a 2×22 \times 2 matrix is calculated as:

det(A)=(ad)(bc),\text{det}(A) = (a \cdot d) - (b \cdot c),

where A=(abcd)A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.

For the given matrix:

a=5,b=4,c=7,d=6.a = -5, \, b = 4, \, c = -7, \, d = 6.

Substituting these values:

det(A)=(56)(47)=30(28)=30+28=2.\text{det}(A) = (-5 \cdot 6) - (4 \cdot -7) = -30 - (-28) = -30 + 28 = -2.

So, the determinant of AA is:

det(A)=2.\text{det}(A) = -2.


2. Adjoint of AA

The adjoint (or adjugate) of a 2×22 \times 2 matrix is found by swapping the diagonal elements and changing the signs of the off-diagonal elements. For A=(5476)A = \begin{pmatrix} -5 & 4 \\ -7 & 6 \end{pmatrix}:

adj(A)=(dbca).\text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.

Substituting a=5,b=4,c=7,d=6a = -5, \, b = 4, \, c = -7, \, d = 6:

adj(A)=(6475).\text{adj}(A) = \begin{pmatrix} 6 & -4 \\ 7 & -5 \end{pmatrix}.

Thus, the adjoint of AA is:

adj(A)=(6475).\text{adj}(A) = \begin{pmatrix} 6 & -4 \\ 7 & -5 \end{pmatrix}.


Final Results:

  1. Determinant: 2-2.
  2. Adjoint: (6475)\begin{pmatrix} 6 & -4 \\ 7 & -5 \end{pmatrix}.

Would you like a step-by-step explanation of any part?
Here are some related questions for practice:

  1. What is the inverse of AA based on its determinant and adjoint?
  2. What are the eigenvalues of AA?
  3. How is the determinant affected if one row is scaled by a constant factor?
  4. What happens to the adjoint if you transpose AA?
  5. Can you calculate the trace of the given matrix AA?

Tip: For a 2×22 \times 2 matrix, the determinant is a quick indicator of invertibility—if it's zero, the matrix is non-invertible.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Determinants
Adjoint of a Matrix

Formulas

Determinant of a 2x2 matrix: det(A) = (a * d) - (b * c)
Adjoint of a 2x2 matrix: adj(A) = [[d, -b], [-c, a]]

Theorems

Determinant properties for 2x2 matrices
Definition of the adjoint matrix

Suitable Grade Level

Grades 10-12