Math Problem Statement
Calculate the determinant of the matrix \( A = \begin{pmatrix} 1 & 2 & -4 \\ 5 & 0 & 5 \\ 4 & 3 & 2 \end{pmatrix} \).
Solution
The task is to calculate the determinant of the given matrix :
1 & 2 & -4 \\ 5 & 0 & 5 \\ 4 & 3 & 2 \end{pmatrix}$$ ### Determinant of a $$3 \times 3$$ matrix The determinant is calculated using the formula: $$\text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg)$$ where the elements of the matrix are: $$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$ ### Step-by-step solution: 1. **Substitute the matrix elements**: $$\begin{aligned} a &= 1, & b &= 2, & c &= -4, \\ d &= 5, & e &= 0, & f &= 5, \\ g &= 4, & h &= 3, & i &= 2. \end{aligned}$$ 2. **Expand the determinant**: $$\text{det}(A) = 1 \cdot (0 \cdot 2 - 5 \cdot 3) - 2 \cdot (5 \cdot 2 - 5 \cdot 4) + (-4) \cdot (5 \cdot 3 - 0 \cdot 4)$$ 3. **Simplify each term**: - $$1 \cdot (0 \cdot 2 - 5 \cdot 3) = 1 \cdot (0 - 15) = -15$$, - $$-2 \cdot (5 \cdot 2 - 5 \cdot 4) = -2 \cdot (10 - 20) = -2 \cdot (-10) = 20$$, - $$-4 \cdot (5 \cdot 3 - 0 \cdot 4) = -4 \cdot (15 - 0) = -4 \cdot 15 = -60$$. 4. **Add the results**: $$\text{det}(A) = -15 + 20 - 60 = -55.$$ ### Final Answer: $$\boxed{-55}$$ Let me know if you'd like a detailed explanation of any step, or if you have more questions! --- Here are 5 related questions: 1. What is the determinant formula for a $$2 \times 2$$ matrix? 2. How do determinants relate to matrix inverses? 3. How can the determinant be used to identify singular matrices? 4. How does row or column swapping affect the determinant? 5. Can the determinant be computed for larger matrices using a similar method? **Tip**: Determinants are useful for solving linear systems of equations via Cramer's Rule.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Determinants
Matrix Algebra
Formulas
Determinant of a 3x3 matrix: det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)
Theorems
Determinant Expansion (Laplace Expansion)
Suitable Grade Level
Grades 10-12
Related Recommendation
How to Calculate the Determinant of a 3x3 Matrix
Calculate the Determinant of a 3x3 Matrix Using Cofactor Expansion
How to Calculate the Determinant of a 3x3 Matrix: Example with Solution
Determinant of a 3x3 Matrix |A| for Matrix A
How to Find the Determinant of a 3x3 Matrix A = [-5, -4, 8; -3, 0, -6; -7, 5, 9]