Math Problem Statement

Find |A| if A = [[1, 2, 3], [0, 1, 0], [0, 3, 0]]

Solution

The problem asks to find the determinant of the matrix AA, where:

1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 3 & 0 \end{bmatrix}.$$ ### Steps to Solve 1. **Matrix Determinant Formula**: For a $$3 \times 3$$ matrix, the determinant is calculated as: $$|A| = a(ei − fh) − b(di − fg) + c(dh − eg),$$ where $$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$. Here: $$a = 1, b = 2, c = 3, d = 0, e = 1, f = 0, g = 0, h = 3, i = 0.$$ 2. **Expanding Along the First Row**: Using cofactor expansion along the first row: $$|A| = 1 \cdot \begin{vmatrix} 1 & 0 \\ 3 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 0 & 1 \\ 0 & 3 \end{vmatrix}.$$ 3. **Evaluate the 2x2 Determinants**: - For $$\begin{vmatrix} 1 & 0 \\ 3 & 0 \end{vmatrix}$$: $$(1 \cdot 0) - (0 \cdot 3) = 0.$$ - For $$\begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$$: $$(0 \cdot 0) - (0 \cdot 0) = 0.$$ - For $$\begin{vmatrix} 0 & 1 \\ 0 & 3 \end{vmatrix}$$: $$(0 \cdot 3) - (1 \cdot 0) = 0.$$ 4. **Substitute Back**: $$|A| = 1(0) - 2(0) + 3(0) = 0.$$ ### Final Answer: $$|A| = 0$$ Would you like me to explain a specific step in more detail? --- ### Related Questions 1. What is the significance of a zero determinant for a matrix? 2. How do you compute determinants for $$n \times n$$ matrices (where $$n > 3$$)? 3. What is the cofactor expansion method for finding determinants? 4. How do row and column operations affect the determinant of a matrix? 5. What is the determinant’s role in determining matrix invertibility? ### Tip: If any row or column of a matrix is entirely zeros, the determinant of the matrix will always be zero.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Determinants
Cofactor Expansion

Formulas

Determinant formula for 3x3 matrices

Theorems

Cofactor Expansion Theorem

Suitable Grade Level

Grades 11-12